89 research outputs found

    The European multicenter trial on the safety and efficacy of guided oblique lumbar interbody fusion (GO-LIF)

    Get PDF
    Background: Because of the implant-related problems with pedicle screw-based spinal instrumentations, other types of fixation have been tried in spinal arthrodesis. One such technique is the direct trans-pedicular, trans-discal screw fixation, pioneered by Grob for spondylolisthesis. The newly developed GO-LIF procedure expands the scope of the Grob technique in several important ways and adds security by means of robotic-assisted navigation. This is the first clinical trial on the GO-LIF procedure and it will assess safety and efficacy. Methods/Design: Multicentric prospective study with n = 40 patients to undergo single level instrumented spinal arthrodesis of the lumbar or the lumbosacral spine, based on a diagnosis of: painful disc degeneration, painful erosive osteochondrosis, segmental instability, recurrent disc herniation, spinal canal stenosis or foraminal stenosis. The primary target criteria with regards to safety are: The number, severity and cause of intra-and perioperative complications. The number of significant penetrations of the cortical layer of the vertebral body by the implant as recognized on postoperative CT. The primary target parameters with regards to feasibility are: Performance of the procedure according to the preoperative plan. The planned follow-up is 12 months and the following scores will be evaluated as secondary target parameters with regards to clinical improvement: VAS back pain, VAS leg pain, Oswestry Disability Index, short form - 12 health questionnaire and the Swiss spinal stenosis questionnaire for patients with spinal claudication. The secondary parameters with regards to construct stability are visible fusion or lack thereof and signs of implant loosening, implant migration or pseudarthrosis on plain and functional radiographs. Discussion: This trial will for the first time assess the safety and efficacy of guided oblique lumbar interbody fusion. There is no control group, but the results, the outcome and the rate of any complications will be analyzed on the background of the literature on instrumented spinal fusion. Despite its limitations, we expect that this study will serve as the key step in deciding whether a direct comparative trial with another fusion technique is warranted

    Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support

    Get PDF
    BACKGROUND: Lumbosacral fusion is a relatively common procedure that is used in the management of an unstable spine. The anterior interbody cage has been involved to enhance the stability of a pedicle screw construct used at the lumbosacral junction. Biomechanical differences between polyaxial and monoaxial pedicle screws linked with various rod contours were investigated to analyze the respective effects on overall construct stiffness, cage strain, rod strain, and contact ratios at the vertebra-cage junction. METHODS: A synthetic model composed of two ultrahigh molecular weight polyethylene blocks was used with four titanium pedicle screws (two in each block) and two rods fixation to build the spinal construct along with an anterior interbody cage support. For each pair of the construct fixed with polyaxial or monoaxial screws, the linked rods were set at four configurations to simulate 0°, 7°, 14°, and 21° lordosis on the sagittal plane, and a compressive load of 300 N was applied. Strain gauges were attached to the posterior surface of the cage and to the central area of the left connecting rod. Also, the contact area between the block and the cage was measured using prescale Fuji super low pressure film for compression, flexion, lateral bending and torsion tests. RESULTS: Our main findings in the experiments with an anterior interbody cage support are as follows: 1) large segmental lordosis can decrease the stiffness of monoaxial pedicle screws constructs; 2) polyaxial screws rather than monoaxial screws combined with the cage fixation provide higher compression and flexion stiffness in 21° segmental lordosis; 3) polyaxial screws enhance the contact surface of the cage in 21° segmental lordosis. CONCLUSION: Polyaxial screws system used in conjunction with anterior cage support yields higher contact ratio, compression and flexion stiffness of spinal constructs than monoaxial screws system does in the same model when the spinal segment is set at large lordotic angles. Polyaxial pedicle screw fixation performs nearly equal percentages of vertebra-cage contact among all constructs with different sagittal alignments, therefore enhances the stabilization effect of interbody cages in the lumbosacral area

    A Dutch guideline for the treatment of scoliosis in neuromuscular disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is considered the primary treatment option for correcting severe scoliosis in neuromuscular disorders. Surgery in this population requires a multidisciplinary approach, careful planning, dedicated surgical procedures, and specialized after care.</p> <p>Methods</p> <p>The guideline is based on scientific evidence and expert opinions. A multidisciplinary working group representing experts from all relevant specialties performed the research. A literature search was conducted to collect scientific evidence in answer to specific questions posed by the working group. Literature was classified according to the level of evidence.</p> <p>Results</p> <p>For most aspects of the treatment scientific evidence is scarce and only low level cohort studies were found. Nevertheless, a high degree of consensus was reached about the management of patients with scoliosis in neuromuscular disorders. This was translated into a set of recommendations, which are now officially accepted as a general guideline in the Netherlands.</p> <p>Conclusion</p> <p>In order to optimize the treatment for scoliosis in neuromuscular disorders a Dutch guideline has been composed. This evidence-based, multidisciplinary guideline addresses conservative treatment, the preoperative, perioperative, and postoperative care of scoliosis in neuromuscular disorders.</p

    Recommendations for the diagnosis of pediatric tuberculosis

    Get PDF
    Tuberculosis (TB) is still the world's second most frequent cause of death due to infectious diseases after HIV infection, and this has aroused greater interest in identifying and managing exposed subjects, whether they are simply infected or have developed one of the clinical variants of the disease. Unfortunately, not even the latest laboratory techniques are always successful in identifying affected children because they are more likely to have negative cultures and tuberculin skin test results, equivocal chest X-ray findings, and atypical clinical manifestations than adults. Furthermore, they are at greater risk of progressing from infection to active disease, particularly if they are very young. Consequently, pediatricians have to use different diagnostic strategies that specifically address the needs of children. This document describes the recommendations of a group of scientific societies concerning the signs and symptoms suggesting pediatric TB, and the diagnostic approach towards children with suspected disease

    Spinal deformities rehabilitation - state of the art review

    Get PDF

    Vertebral column decancellation

    No full text
    • …
    corecore