3,875 research outputs found

    Estimation of Dynamic Mixed Double Factors Model in High Dimensional Panel Data

    Full text link
    The purpose of this article is to develop the dimension reduction techniques in panel data analysis when the number of individuals and indicators is large. We use Principal Component Analysis (PCA) method to represent large number of indicators by minority common factors in the factor models. We propose the Dynamic Mixed Double Factor Model (DMDFM for short) to re ect cross section and time series correlation with interactive factor structure. DMDFM not only reduce the dimension of indicators but also consider the time series and cross section mixed effect. Different from other models, mixed factor model have two styles of common factors. The regressors factors re flect common trend and reduce the dimension, error components factors re ect difference and weak correlation of individuals. The results of Monte Carlo simulation show that Generalized Method of Moments (GMM) estimators have good unbiasedness and consistency. Simulation also shows that the DMDFM can improve prediction power of the models effectively.Comment: 38 pages, 2 figure

    Hierarchical Orthogonal Matrix Generation and Matrix-Vector Multiplications in Rigid Body Simulations

    Full text link
    In this paper, we apply the hierarchical modeling technique and study some numerical linear algebra problems arising from the Brownian dynamics simulations of biomolecular systems where molecules are modeled as ensembles of rigid bodies. Given a rigid body pp consisting of nn beads, the 6×3n6 \times 3n transformation matrix ZZ that maps the force on each bead to pp's translational and rotational forces (a 6×16\times 1 vector), and VV the row space of ZZ, we show how to explicitly construct the (3n6)×3n(3n-6) \times 3n matrix Q~\tilde{Q} consisting of (3n6)(3n-6) orthonormal basis vectors of VV^{\perp} (orthogonal complement of VV) using only O(nlogn)\mathcal{O}(n \log n) operations and storage. For applications where only the matrix-vector multiplications Q~v\tilde{Q}{\bf v} and Q~Tv\tilde{Q}^T {\bf v} are needed, we introduce asymptotically optimal O(n)\mathcal{O}(n) hierarchical algorithms without explicitly forming Q~\tilde{Q}. Preliminary numerical results are presented to demonstrate the performance and accuracy of the numerical algorithms

    An Efficient Numerical Method for Mean Curvature-Based Image Registration Model

    Get PDF
    Mean curvature-based image registration model firstly proposed by Chumchob-Chen-Brito (2011) offered a better regularizer technique for both smooth and nonsmooth deformation fields. However, it is extremely challenging to solve efficiently this model and the existing methods are slow or become efficient only with strong assumptions on the smoothing parameter β. In this paper, we take a different solution approach. Firstly, we discretize the joint energy functional, following an idea of relaxed fixed point is implemented and combine with Gauss-Newton scheme with Armijo's Linear Search for solving the discretized mean curvature model and further to combine with a multilevel method to achieve fast convergence. Numerical experiments not only confirm that our proposed method is efficient and stable, but also it can give more satisfying registration results according to image quality
    corecore