2 research outputs found

    Proteasome Subunit Selective Activity-Based Probes Report on Proteasome Core Particle Composition in a Native Polyacrylamide Gel Electrophoresis Fluorescence-Resonance Energy Transfer Assay

    No full text
    Most mammalian tissues contain a single proteasome species: constitutive proteasomes. Tissues able to express, next to the constitutive proteasome catalytic activities (β1c, β2c, β5c), the three homologous activities, β1i, β2i and β5i, may contain numerous distinct proteasome particles: immunoproteasomes (composed of β1i, β2i and β5i) and mixed proteasomes containing a mix of these activities. This work describes the development of new subunit-selective activity-based probes and their use in an activity-based protein profiling assay that allows the detection of various proteasome particles. Tissue extracts are treated with subunit-specific probes bearing distinct fluorophores and subunit-specific inhibitors. The samples are resolved by native polyacrylamide gel electrophoresis, after which fluorescence-resonance energy transfer (FRET) reports on the nature of proteasomes present

    Structure-Based Design of β5c Selective Inhibitors of Human Constitutive Proteasomes

    No full text
    This work reports the development of highly potent and selective inhibitors of the β5c catalytic activity of human constitutive proteasomes. The work describes the design principles, large hydrophobic P3 residue and small hydrophobic P1 residue, that led to the synthesis of a panel of peptide epoxyketones; their evaluation and the selection of the most promising compounds for further analyses. Structure–activity relationships detail how in a logical order the β1c/i, β2c/i, and β5i activities became resistant to inhibition as compounds were diversified stepwise. The most effective compounds were obtained as a mixture of <i>cis</i>- and <i>trans</i>-biscyclohexyl isomers, and enantioselective synthesis resolved this issue. Studies on yeast proteasome structures complexed with some of the compounds provide a rationale for the potency and specificity. Substitution of the N-terminus in the most potent compound for a more soluble equivalent led to a cell-permeable molecule that selectively and efficiently blocks β5c in cells expressing both constitutive proteasomes and immunoproteasomes
    corecore