209 research outputs found

    Bench-To-Bedside and Bedside Back to the Bench; Coordinating Clinical and Experimental Traumatic Brain Injury Studies

    Get PDF
    Traumatic brain injury (TBI) is one of the leading cause of death and long-term disability in virtually every country. Advances in neurointensive care have resulted in steadily decreasing morbidity, but the number of individuals with severe long-term disability have not changed significantly and the number of moderate disability has shown steady increase over the last 3 decades. Despite years of intensive preclinical research – and millions spent – there are virtually no drugs specifically developed to mitigate the consequences of TBI. Here we discuss some of the existing gaps between clinical and experimental TBI studies that may have contributed to the current status. We do this hoping that clinical, basic, and translational scientists will design and coordinate studies in order to achieve maximum benefits for TBI patients. In conclusion, we suggest to: (1) Develop consensus-based guidelines for experimental TBI research, similar to “best practices” in the clinic; (2) Generate a consensus-based template for clinical data collection and deposition as well as for experimental TBI data collection and deposition; (3) Use a systems biology approach and create a database for integrating existing data from basic and clinical research

    A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury.

    Get PDF
    BACKGROUND: In order to improve injury assessment of brain injuries, protein markers of pathophysiological processes and tissue fate have been introduced in the clinic. The most studied protein "biomarker" of cerebral damage in traumatic brain injury (TBI) is the protein S100B. The aim of this narrative review is to thoroughly analyze the properties and capabilities of this biomarker with focus on clinical utility in the assessment of patients suffering from TBI. RESULTS: S100B has successfully been implemented in the clinic regionally (1) to screen mild TBI patients evaluating the need to perform a head computerized tomography, (2) to predict outcome in moderate-to-severe TBI patients, (3) to detect secondary injury development in brain-injured patients and (4) to evaluate treatment efficacy. The potential opportunities and pitfalls of S100B in the different areas usually refer to its specificity and sensitivity to detect and assess intracranial injury. CONCLUSION: Given some shortcomings that should be realized, S100B can be used as a versatile screening, monitoring and prediction tool in the management of TBI patients

    Case Report: Extreme Levels of Serum S-100B in a Patient with Chronic Subdural Hematoma.

    Get PDF
    The protein S-100B is a biomarker increasingly used within neurosurgery and neurointensive care. As a relatively sensitive, yet unspecific, indicator of CNS pathology, potential sources of error must be clearly understood when interpreting serum S-100B levels. This case report studied the course of a 46-year-old gentleman with a chronic subdural hemorrhage, serum S-100B levels of 22 μg/l, and a history of malignant melanoma. Both intra- and extra-cranial sources of S-100B are evaluated and imply an unclear contribution of several sources to the total serum concentration. Potential sources of error when interpreting serum concentrations of S-100B are discussed

    Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles.</p> <p>Methods</p> <p>Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O<sub>2</sub>/88% N<sub>2</sub>) or normoxic (22% O<sub>2</sub>/78% N<sub>2</sub>) ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod, beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique.</p> <p>Results</p> <p>TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1β and TNF but did not further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with respect to glucose, lactate, and glutamate levels.</p> <p>Conclusion</p> <p>Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction.</p

    Assessment of Platelet Function in Traumatic Brain Injury-A Retrospective Observational Study in the Neuro-Critical Care Setting.

    Get PDF
    BACKGROUND: Despite seemingly functional coagulation, hemorrhagic lesion progression is a common and devastating condition following traumatic brain injury (TBI), stressing the need for new diagnostic techniques. Multiple electrode aggregometry (MEA) measures platelet function and could aid in coagulopathy assessment following TBI. The aims of this study were to evaluate MEA temporal dynamics, influence of concomitant therapy, and its capabilities to predict lesion progression and clinical outcome in a TBI cohort. MATERIAL AND METHODS: Adult TBI patients in a neurointensive care unit that underwent MEA sampling were retrospectively included. MEA was sampled if the patient was treated with antiplatelet therapy, bled heavily during surgery, or had abnormal baseline coagulation values. We assessed platelet activation pathways involving the arachidonic acid receptor (ASPI), P2Y12 receptor, and thrombin receptor (TRAP). ASPI was the primary focus of analysis. If several samples were obtained, they were included. Retrospective data were extracted from hospital charts. Outcome variables were radiologic hemorrhagic progression and Glasgow Outcome Scale assessed prospectively at 12 months posttrauma. MEA levels were compared between patients on antiplatelet therapy. Linear mixed effect models and uni-/multivariable regression models were used to study longitudinal dynamics, hemorrhagic progression and outcome, respectively. RESULTS: In total, 178 patients were included (48% unfavorable outcome). ASPI levels increased from initially low values in a time-dependent fashion (p < 0.001). Patients on cyclooxygenase inhibitors demonstrated low ASPI levels (p < 0.001), while platelet transfusion increased them (p < 0.001). The first ASPI (p = 0.039) and TRAP (p = 0.009) were significant predictors of outcome, but not lesion progression, in univariate analyses. In multivariable analysis, MEA values were not independently correlated with outcome. CONCLUSION: A general longitudinal trend of MEA is identified in this TBI cohort, even in patients without known antiplatelet therapies. Values appear also affected by platelet inhibitory treatment and by platelet transfusions. While significant in univariate models to predict outcome, MEA values did not independently correlate to outcome or lesion progression in multivariable analyses. Further prospective studies to monitor coagulation in TBI patients are warranted, in particular the interpretation of pathological MEA values in patients without antiplatelet therapies

    Prehospital Intubation and Outcome in Traumatic Brain Injury-Assessing Intervention Efficacy in a Modern Trauma Cohort.

    Get PDF
    BACKGROUND: Prehospital intubation in traumatic brain injury (TBI) focuses on limiting the effects of secondary insults such as hypoxia, but no indisputable evidence has been presented that it is beneficial for outcome. The aim of this study was to explore the characteristics of patients who undergo prehospital intubation and, in turn, if these parameters affect outcome. MATERIAL AND METHODS: Patients ≥15 years admitted to the Department of Neurosurgery, Stockholm, Sweden with TBI from 2008 through 2014 were included. Data were extracted from prehospital and hospital charts, including prospectively collected Glasgow Outcome Score (GOS) after 12 months. Univariate and multivariable logistic regression models were employed to examine parameters independently correlated to prehospital intubation and outcome. RESULTS: A total of 458 patients were included (n = 178 unconscious, among them, n = 61 intubated). Multivariable analyses indicated that high energy trauma, prehospital hypotension, pupil unresponsiveness, mode of transportation, and distance to the hospital were independently correlated with intubation, and among them, only pupil responsiveness was independently associated with outcome. Prehospital intubation did not add independent information in a step-up model versus GOS (p = 0.154). Prehospital reports revealed that hypoxia was not the primary cause of prehospital intubation, and that the procedure did not improve oxygen saturation during transport, while an increasing distance from the hospital increased the intubation frequency. CONCLUSION: In this modern trauma cohort, prehospital intubation was not independently associated with outcome; however, hypoxia was not a common reason for prehospital intubation. Prospective trials to assess efficacy of prehospital airway intubation will be difficult due to logistical and ethical considerations

    Extended Analysis of Axonal Injuries Detected Using Magnetic Resonance Imaging in Critically Ill Traumatic Brain Injury Patients

    Get PDF
    Publisher Copyright: © Jonathan Tjerkaski et al., 2022; Published by Mary Ann Liebert, Inc. 2022.Studies show conflicting results regarding the prognostic significance of traumatic axonal injuries (TAI) in patients with traumatic brain injury (TBI). Therefore, we documented the presence of TAI in several brain regions, using different magnetic resonance imaging (MRI) sequences, and assessed their association to patient outcomes using machine learning. Further, we created a novel MRI-based TAI grading system with the goal of improving outcome prediction in TBI. We subsequently evaluated the performance of several TAI grading systems. We used a genetic algorithm to identify TAI that distinguish favorable from unfavorable outcomes. We assessed the discriminatory performance (area under the curve [AUC]) and goodness-of-fit (Nagelkerke pseudo-R2) of the novel Stockholm MRI grading system and the TAI grading systems of Adams and associates, Firsching and coworkers. and Abu Hamdeh and colleagues, using both univariate and multi-variate logistic regression. The dichotomized Glasgow Outcome Scale was considered the primary outcome. We examined the MRI scans of 351 critically ill patients with TBI. The TAI in several brain regions, such as the midbrain tegmentum, were strongly associated with unfavorable outcomes. The Stockholm MRI grading system exhibited the highest AUC (0.72 vs. 0.68-0.69) and Nagelkerke pseudo-R2 (0.21 vs. 0.14-0.15) values of all TAI grading systems. These differences in model performance, however, were not statistically significant (DeLong test, p > 0.05). Further, all included TAI grading systems improved outcome prediction relative to established outcome predictors of TBI, such as the Glasgow Coma Scale (likelihood-ratio test, p < 0.001). Our findings suggest that the detection of TAI using MRI is a valuable addition to prognostication in TBI.Peer reviewe

    Prognostic performance of computerized tomography scoring systems in civilian penetrating traumatic brain injury : an observational study

    Get PDF
    Background The prognosis of penetrating traumatic brain injury (pTBI) is poor yet highly variable. Current computerized tomography (CT) severity scores are commonly not used for pTBI prognostication but may provide important clinical information in these cohorts. Methods All consecutive pTBI patients from two large neurotrauma databases (Helsinki 1999-2015, Stockholm 2005-2014) were included. Outcome measures were 6-month mortality and unfavorable outcome (Glasgow Outcome Scale 1-3). Admission head CT scans were assessed according to the following: Marshall CT classification, Rotterdam CT score, Stockholm CT score, and Helsinki CT score. The discrimination (area under the receiver operating curve, AUC) and explanatory variance (pseudo-R-2) of the CT scores were assessed individually and in addition to a base model including age, motor response, and pupil responsiveness. Results Altogether, 75 patients were included. Overall 6-month mortality and unfavorable outcome were 45% and 61% for all patients, and 31% and 51% for actively treated patients. The CT scores' AUCs and pseudo-R(2)s varied between 0.77-0.90 and 0.35-0.60 for mortality prediction and between 0.85-0.89 and 0.50-0.57 for unfavorable outcome prediction. The base model showed excellent performance for mortality (AUC 0.94, pseudo-R-2 0.71) and unfavorable outcome (AUC 0.89, pseudo-R-2 0.53) prediction. None of the CT scores increased the base model's AUC (p > 0.05) yet increased its pseudo-R-2 (0.09-0.15) for unfavorable outcome prediction. Conclusion Existing head CT scores demonstrate good-to-excellent performance in 6-month outcome prediction in pTBI patients. However, they do not add independent information to known outcome predictors, indicating that a unique score capturing the intracranial severity in pTBI may be warranted.Peer reviewe
    corecore