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Traumatic brain injury (TBI) is one of the leading cause of death and long-term disability in vir-
tually every country. Advances in neurointensive care have resulted in steadily decreasing
morbidity, but the number of individuals with severe long-term disability have not changed
significantly and the number of moderate disability has shown steady increase over the
last 3 decades. Despite years of intensive preclinical research – and millions spent – there
are virtually no drugs specifically developed to mitigate the consequences of TBI. Here
we discuss some of the existing gaps between clinical and experimental TBI studies that
may have contributed to the current status. We do this hoping that clinical, basic, and
translational scientists will design and coordinate studies in order to achieve maximum
benefits forTBI patients. In conclusion, we suggest to: (1) Develop consensus-based guide-
lines for experimental TBI research, similar to “best practices” in the clinic; (2) Generate a
consensus-based template for clinical data collection and deposition as well as for experi-
mental TBI data collection and deposition; (3) Use a systems biology approach and create
a database for integrating existing data from basic and clinical research.
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This is the golden age of traumatic brain injury (TBI) research,
veterans of the field have been saying. Increased public awareness,
financial support, and novel methodologies have been aligned cre-
ating a seemingly perfect environment to find better treatments
for TBI patients. We believe that reducing existing incongruities
between clinical and experimental TBI research will contribute to
saving more lives and significantly improve the quality of life after
TBI. Improving the long-term functional outcome is an especially
critical issue. Although progress in neurointensive care has resulted
in steadily decreasing death rates, the number of individuals with
severe disability has not changed significantly. Alarmingly, the rate
of long-term, moderate disability after TBI has actually increased
over the last 3 decades (Elf et al., 2002).

Here we discuss some of the existing incongruities between
clinical and experimental TBI studies. We do this hoping that clin-
ical, basic, and translational scientists will design and coordinate
studies in order to achieve maximum benefits for TBI patients.
The existing mismatches between clinical and experimental TBI
research we discuss below are in (1) the methods, (2) the biosam-
ples, and (3) the timing of “sampling.” Some of the differences are
dictated by clear technical, methodological, and ethical constraints
while others, however, are not. Those that are not can and should
be modified to bring the two fields closer together. In order to
illustrate the existing differences between clinical and experimen-
tal TBI, we have attempted to use numbers to illustrate our points.
The differences may be even greater than depicted, since only a
fraction of clinical TBI cases are part of clinical studies whereas
results from most experimental TBI research are published.

METHODS
In Table 1 we have listed the methods most frequently used in
clinical and experimental TBI studies as well as the type of data
output that is commonly generated. In clinical TBI one of the
main sources of diagnostic information is in vivo imaging (Maas
et al., 1997; Belanger et al., 2007; Coles, 2007; Gallagher et al., 2007;
Jagoda et al., 2009). In contrast, there are very few animal studies
using similar imaging approaches. We believe that by employing
different in vivo imaging modalities in animal studies, experimen-
tal, and clinical scientists will be better equipped to cross-validate
their respective data and will help interpret their respective find-
ings. In clinical settings, functional information is derived from
various injury severity tests (Saatman et al., 2008). These include
the Glasgow Coma Scale (GCS), as well as from other neurobehav-
ioral assessments (Maas et al., 1997). Such functional assessments,
in various combinations, are routinely used in virtually every clin-
ical setting. While it is not possible to mimic GCS rates which
measures alertness (eye opening), long-tract motor signs (extend–
flex, etc.), and higher-order (verbal) functions, there are basic neu-
robehavioral tests available for rodents (Crawley, 2003). Although
these are inexpensive tests, surprisingly few experimental studies
use them routinely. They are extremely valuable to monitor the
extent and the temporal changes of functional deficits after exper-
imental injury. Even with the caveat that these tests are highly
observer dependent, they can provide critical functional infor-
mation. Assessing basic neurobehavioral functions after injury
would also help to address inter-animal variability, an important
issue that frequently arises even during the best-designed animal
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TBI experiments. Neurobehavioral assays are highly sensitive and
can reflect potential differences between animals with identical
parameters of experimental injury. In combination with addi-
tional in vivo cellular and molecular analyses, these tests would
be immensely valuable in bridging the gap between experimental
and clinical TBI research. In the clinical (and especially neuroin-
tensive care) setting, cerebral monitoring is another widely used,
vital source of diagnostic information (Maas et al., 1997; Brat-
ton et al., 2007a,b,c,d,e,f,g; Saatman et al., 2008; Sande and West,
2010). It is far less frequently used in experimental TBI, partly
due to technical issues such as the sizes of the various probes and
the necessary modification of equipment and software. Impor-
tantly, the most frequently used animal of TBI – the rodent – is
not especially amenable to these techniques. Further sources of
important diagnostic information in clinical TBI are the sys-
temic changes in physiology, metabolism, and the inflammatory
response (Bratton et al., 2007a,b,c,d,e,f,g; Saatman et al., 2008;
Sande and West, 2010). Monitoring some of the same parameters
in experimental TBI and analyzing data in the context of histo-
logical and molecular outcome measures could be of substantial
value in reducing incongruities between clinical and experimen-
tal TBI research. Transcranial Doppler (TCD) and quantitative
electroencephalography (qEEG) have been used in the clinical
setting to provide information about blood flow, seizure activ-
ity, ischemia, and vasospasm (Newell and Aaslid, 1992; Wallace
et al., 2001; Thakor and Tong, 2004; Nuwer et al., 2005; Tsiv-
goulis et al., 2009). Animal versions of the methods along with
the equipment exist. However, these techniques are infrequently
used in experimental TBI research. Again, combining the readouts
of TCD and qEEG measurements with biochemical and histolog-
ical analyses of the brain tissue in experimental TBI could help to
validate and interpret clinical TCD and qEEG data. Biochemical
assays of blood (serum), cerebrospinal fluid (CSF), and cerebral
microdialysate (MD) that identify changes in cerebral metabo-
lism, oxygenation, and glucose metabolism provide clinicians with
important data of disease progression (Maas et al., 1997; Brat-
ton et al., 2007a,b,c,d,e,f,g; Saatman et al., 2008; Sande and West,
2010). These data are routinely obtained in clinical TBI (even if
data is not necessarily published), but less frequently included
in experimental TBI research. Cerebral microdialysis can be used
in rodents to obtain interstitial fluid from various regions of the
brain. MD samples along with CSF can be then analyzed in a sim-
ilar way to clinical practice and the obtained data should help in
interpreting the clinical findings (Bellander et al., 2004; Hillered
et al., 2006; Goodman and Robertson, 2009). Proteomics analy-
sis of blood (serum) and CSF has shown some initial promise in
predicting outcome in clinical studies (Jagoda et al., 2008; Saat-
man et al., 2008; Cadosch et al., 2010). Similar studies have also
been performed in experimental TBI (Hayes et al., 2009). With its
controlled conditions, experimental TBI can provide an excellent
framework for systematic evaluation of markers. In combina-
tion with additional functional, cellular, and molecular analyses,
such studies would constitute an important step toward valida-
tion of the markers and also to an increased understanding of the
underlying pathologies.

One of the most frequent “outcome measures” in experimental
TBI is obtained by using various histological techniques ranging

from classical histopathology to in situ hybridization histochem-
istry. While clinical neuropathology has been a powerful tool to
identify some of the fundamental anatomical and cellular changes
associated with TBI, for understandable reasons, it is unable to
provide the necessary spatial and temporal resolutions that exper-
imental TBI studies can offer. Combining histological analysis
with in vivo imaging, neurobehavioral testing, and biochemical
assays would be especially critical in integrating experimental and
clinical data. The power and resolution of the various “omics” –
e.g., genomics, transcriptomics (Di Pietro et al., 2010), lipidomics
(Sparvero et al., 2010), and last but not least proteomics – have
started to generate significant new data in clinical and experimen-
tal TBI research (Oli et al., 2009; Ottens et al., 2010). The flexibility
in designing experimental TBI studies that can mimic clinical sce-
narios would make such studies even more valuable, especially
if they are combined with additional functional/neurobehavioral
and morphological/histological “outcome measures.”

BIOSAMPLES
In Table 2, we listed the main types of biosamples collected for
the various assays in clinical vs. experimental TBI studies. In clin-
ical settings, blood (systemic, arterial, and venous) is collected
and analyzed routinely for diagnostic purposes (yet not necessar-
ily published). Similar analysis is far less frequently performed in
experimental TBI studies. However, blood could easily be collected
from experimental animals at all time points required to match
clinical sampling times. Performing some of the same biochemi-
cal, cellular, and metabolic analyses of experimental samples could
provide information that can be directly compared with clinical
data. CSF has long been used for monitoring progression and out-
come in clinical TBI (Saatman et al., 2008; Kochanek et al., 2010).
Admittedly, it can be challenging to obtain sufficient quantity of
CSF from the rat, especially at multiple time points. However, such
sampling and the subsequent analysis of CSF samples could be very
useful in enabling direct comparison of clinical and experimental
data especially in the context of outcome measures including neu-
robehavioral, cellular, and molecular as discussed above. Cerebral
MD studies have been performed in rat models of TBI as well as in
clinical TBI studies (Maurer, 2010; O’Connor et al., 2011). While
there are issues with cerebral MD, it can be a unique source of infor-
mation about both spatially and temporally restricted pathological
changes at the molecular level (Saatman et al., 2008).

TIMING
In Table 3 we have listed the typical time points at which biosam-
ples are obtained during clinical vs. experimental TBI studies. A
significant amount of clinical data is collected during the early
time periods (hours and days) of the post-injury phase using
imaging, neurobehavioral testing, cerebral monitoring, and bio-
chemical assays. In addition to the other differences (see Table 1),
such early time points are not usually monitored in experimental
TBI. It should be noted that one must also consider the significant
differences between humans and rodents with respect to meta-
bolic rate, life span, etc., when attempting to match clinical and
experimental time points (Quinn, 2005).

The strengths and possibilities associated with the design
of experimental studies include good control of exposure data
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Table 1 | Clinical vs. experimental research: a comparison of methods.

Methods Use* Type of information

Clinical Experimental Temporal Spatial Molecular Functional

IN VIVO IMAGING

CT 2685 150 Yes Yes No No

MRI 3595 435 Yes Yes Yes/no Yes

PET 230 37 Yes Yes Yes Yes/no

NEUROBEHAVIORAL ASSAYS

Injury severity 4983 705 Yes No No Yes

Neurobehavioral 289 140 Yes No No Yes

CEREBRAL MONITORING

ICP 1089 220 Yes No No Yes

CBF 1862 879 Yes No No Yes

TCD 301 19 Yes No No Yes

qEEG 2258 375 Yes Yes/no No Yes

BIOCHEMICAL ASSAYS

Blood/metabolites 46 42 Yes No Yes No

CSF/metabolites 25 5 Yes No Yes No

MD/metabolites 20 15 Yes Yes Yes No

Blood/protein biomarkers 291 203 Yes No Yes No

CSF/protein biomarkers 91 30 Yes No Yes No

MD/protein biomarkers 6 1 Yes Yes Yes No

IN VITRO ANALYSIS OF BRAINTISSUE

Histopathology 7461 6005 No Yes No Yes/no

IHC 434 1862 No Yes Yes Yes/no

ISHH 36 392 No Yes Yes Yes/no

EM 144 509 No Yes Yes/no Yes/no

Genomics 45 47 No Yes Yes Yes/no

Proteomics 42 43 No Yes Yes Yes/no

*Use is defined as relative frequency of use based on the number of publications retrieved by searching PubMed using the search terms: “traumatic brain injury” in

combination with the methods presented in the left column together with the limitation “animal” or “human.”The number of papers found is registered in the second

and third columns on the left. CT, computer tomography; MRI, magnetic resonance imaging; PET, positron emission tomography; ICP, intracranial pressure; CBF,

cerebral blood flow;TCD, transcranial Doppler; qEEG, quantitative electroencephalography; CSF, cerebrospinal fluid; MD, microdialysate; IHC, immunohistochemistry;

ISHH, in situ hybridization histochemistry; EM, electron microscopy.

Table 2 | Comparing biosamples collected for the various analyses in

clinical and in experimentalTBI studies.

Samples Blood Serum CSF Microdialysate Brain tissue

Experimental 14 0 375 173 4264

Clinical 96 24 1691 225 3636

Search on Entrez PubMed using “traumatic brain injury” in combination with the

parameters presented in the left column together with the limitation “animal” or

“human.” The number of papers found is registered.

(the physics of the injury). Ongoing tests with helmet-mounted
accelerometers can provide more detailed exposure data (Rigby
et al., 2011) helping to validate predictions from experimental
studies. FEM (finite element modeling) can be used as a tool to cal-
culate force distribution in both clinical and experimental TBI, but
this approach needs to be validated by actual detailed biological

findings and physics data that usually would not be available in
clinical materials.

Age as well as the genetic background can be selected with
different rodent strains, gene knock-out models, etc. Obviously,
this can be challenging to realistically mimic in clinical TBI stud-
ies. It is also challenging to find counterparts to complex data
on population backgrounds, such as single-nucleotide polymor-
phisms for important genes that are available in clinical materials.
For numerous reasons, experimental TBI research rarely gener-
ates truly longitudinal data. A few clinical databanks such as the
Vietnam Head Injury study provide exceptionally long follow-ups
(extending for more than 3 decades), imaging data, as well as
detailed genetic and cognitive data in combination with basic pre-
injury data (Raymont et al., 2010). Such materials are superbly
suitable to bridge the gap between clinical and experimental stud-
ies. In summary, we feel that is exceedingly important to find the
connecting points that could help us take full advantage of the
different strengths in clinical and experimental materials.

www.frontiersin.org February 2012 | Volume 3 | Article 3 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


Agoston et al. Clinical and experimental neurotrauma research gaps

Table 3 | Comparing the temporal pattern of performing the various

analyses in clinical and in experimentalTBI studies.

Methods Time

Hours Days Weeks Months

In vivo imaging

Clinical +++ ++ + ±
Experimental ± + ± −

Neurobehavioral

Clinical +++ +++ +++ +++
Experimental ± ± ++ ±

Cerebral monitoring

Clinical +++ ++ − −
Experimental − − − −

Biochemical assays

Clinical +++ +++ + ±
Experimental − ± ± −

In vitro analysis of brain tissue

Clinical ± ± ± ±
Experimental +++ ++ + −

Typical frequency of use: not typically used; ±, rarely used; +, typically used; ++,

frequently used; +++, routinely used.The indications are based on outputs from

literature searches and personal communications.

We would like to close this article by suggesting a few easily
implementable solutions that could help coordinate clinical and
experimental TBI studies: (1) Develop consensus-based guidelines
for experimental TBI research, similar to “best practices” in the

clinic. This would require researchers to design, analyze, and
report their experiments according to accepted “best practices.”
These “best practices” should mimic clinical scenarios and include
neurobehavioral tests, assays for monitoring systemic changes in
the peripheral blood at time points mirroring clinical sampling
times, and so on. (2) Generate a consensus-based template for
both clinical AND experimental TBI data collection and deposi-
tion. Finally, (3) use a systems biology approach and establish a
database into which current data from both clinical and experi-
mental TBI research can be imported and analyzed in the context
of existing neurobiology knowledge. This would greatly help to
organize and utilize the treasure of existing data derived from past
clinical and experimental TBI studies. There are different poten-
tial organizational principles (like functional neuroanatomy) that
could provide the backbone for such a database. Such a database
should be interfaced with cellular, molecular, and disease databases
already in existence. One example of a disease-oriented database
which collects and disseminates relevant information is the inter-
national collaborative effort of the Biomedical Informatics for the
Management of Cerebral Aneurysms (@neurIST).

We believe that by implementing some of these measures, clin-
ical and experimental TBI research will become more relevant,
effectual, and would ultimately help to make the next decade truly
a golden age of TBI research. We would like to open this paper for
discussion. Your views, comments, etc., are very welcome.
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