178 research outputs found

    An algorithm for correction of atmospheric scattering dilution effects in volcanic gas emission measurements using skylight differential optical absorption spectroscopy

    Get PDF
    Differential Optical Absorption Spectroscopy (DOAS) is commonly used to measure gas emissions from volcanoes. DOAS instruments measure the absorption of solar ultraviolet (UV) radiation scattered in the atmosphere by sulfur dioxide (SO2) and other trace gases contained in volcanic plumes. The standard spectral retrieval methods assume that all measured light comes from behind the plume and has passed through the plume along a straight line. However, a fraction of the light that reaches the instrument may have been scattered beneath the plume and thus has passed around it. Since this component does not contain the absorption signatures of gases in the plume, it effectively “dilutes” the measurements and causes underestimation of the gas abundance in the plume. This dilution effect is small for clean-air conditions and short distances between instrument and plume. However, plume measurements made at long distance and/or in conditions with significant atmospheric aerosol, haze, or clouds may be severely affected. Thus, light dilution is regarded as a major error source in DOAS measurements of volcanic degassing. Several attempts have been made to model the phenomena and the physical mechanisms are today relatively well understood. However, these models require knowledge of the local atmospheric aerosol composition and distribution, parameters that are almost always unknown. Thus, a practical algorithm to quantitatively correct for the dilution effect is still lacking. Here, we propose such an algorithm focused specifically on SO2 measurements. The method relies on the fact that light absorption becomes non-linear for high SO2 loads, and that strong and weak SO2 absorption bands are unequally affected by the diluting signal. These differences can be used to identify when dilution is occurring. Moreover, if we assume that the spectral radiance of the diluting light is identical to the spectrum of light measured away from the plume, a measured clean air spectrum can be used to represent the dilution component. A correction can then be implemented by iteratively subtracting fractions of this clean air spectrum from the measured spectrum until the respective absorption signals on strong and weak SO2 absorption bands are consistent with a single overhead SO2 abundance. In this manner, we can quantify the magnitude of light dilution in each individual measurement spectrum as well as obtaining a dilution-corrected value for the SO2 column density along the line of sight of the instrument. This paper first presents the theory behind the method, then discusses validation experiments using a radiative transfer model, as well as applications to field data obtained under different measurement conditions at three different locations; Fagradalsfjall located on the Reykjanaes peninsula in south Island, Manam located off the northeast coast of mainland Papua New Guinea and Holuhraun located in the inland of north east Island

    Seasonal and diurnal patterns in the dispersion of SO2 from Mt. Nyiragongo

    Get PDF
    Mt. Nyiragongo is an active volcano located in the Democratic Republic of Congo, close to the border of Rwanda and about 15 km north of the city of Goma (~ 1,000,000 inhabitants). Gases emitted from Nyiragongo might pose a persistent hazard to local inhabitants and the environment. While both ground- and satellite-based observations of the emissions exist, prior to this study, no detailed analysis of the dispersion of the emissions have been made. We have conducted a dispersion study, using a modelling system to determine the geographical distribution of SO2.A combination of a meteorological model (WRF), a Lagrangian particle dispersion model (FLEXPART-WRF) and flux data based on DOAS measurements from the NOVAC-network is used. Since observations can only be made during the day, we use random sampling of fluxes and ensemble modelling to estimate night-time emissions.Seasonal variations in the dispersion follows the migration of the Inter Tropical Convergence Zone. In June-August, the area with the highest surface concentrations is located to the northwest, and in December-February, to the southwest of the source. Diurnal variations in surface concentrations were determined by the development of the planetary boundary layer and the lake-/land breeze cycle around lake Kivu. Both processes contribute to low surface concentrations during the day and high concentrations during the night. However, the strong northerly trade winds in November-March weakened the lake breeze, contributing to higher daytime surface concentrations along the northern shore of Lake Kivu, including the city of Goma. For further analysis and measurements, it is important to include both seasonal and diurnal cycles in order to safely cover periods of high and potentially hazardous concentrations

    A rapid deployment instrument network for temporarily monitoring volcanic SO2 emissions - a study case from Telica volcano

    Get PDF
    Volcanic gas emissions play a crucial role in describing geophysical processes; hence measurements of magmatic gases such as SO2 can be used as tracers prior and during volcanic crises. Different measurement techniques based on optical spectroscopy have provided valuable information when assessing volcanic crises. This paper describes the design and implementation of a network of spectroscopic instruments based on Differential Optical Absorption Spectroscopy (DOAS) for remote sensing of volcanic SO2 emissions, which is robust, portable and can be deployed in relative short time. The setup allows the processing of raw data in situ even in remote areas with limited accessibility, and delivers pre-processed data to end-users in near real time even during periods of volcanic crisis, via a satellite link. In addition, the hardware can be used to conduct short term studies of volcanic plumes in remotes areas. The network was tested at Telica, an active volcano located in western Nicaragua, producing what is so far the largest data set of continuous SO2 flux measurements at this volcano

    Long-term monitoring of SO2 quiescent degassing from Nyiragongo’s lava lake

    Get PDF
    The activity of open-vent volcanoes with an active lava-lake, such as Nyiragongo, is characterized by persistent degassing, thus continuous monitoring of the rate, volume and fate of their gas emissions is of great importance to understand their geophysical state and their potential impact. We report results of SO2 emission measurements from Nyiragongo conducted between 2004 and 2012 with a network of ground-based scanning-DOAS (Differential Optical Absorption Spectroscopy) remote sensors. The mean SO2 emission rate is found to be 13 ± 9 kg s−1, similar to that observed in 1959. Daily emission rate has a distribution close to log-normal and presents large inter-day variability, reflecting the dynamics of percolation of magma batches of heterogeneous size distribution and changes in the effective permeability of the lava lake. The degassed S content is found to be between 1000 and 2000 ppm from these measurements and the reported magma flow rates sustaining the lava lake. The inter-annual trend and plume height statistics indicate stability of a quiescently degassing lava lake during the period of study

    BrO/SO2 molar ratios from scanning DOAS measurements in the NOVAC network

    Get PDF
    The molar ratio of BrO to SO2 is, like other halogen/sulfur ratios, a possible precursor for dynamic changes in the shallow part of a volcanic system. While the predictive significance of the BrO/SO2 ratio has not been well constrained yet, it has the major advantage that this ratio can be readily measured using the remote-sensing technique differential optical absorption spectroscopy (DOAS) in the UV. While BrO/SO2 ratios have been measured during several short-term field campaigns, this article presents an algorithm that can be used to obtain long-term time series of BrO/SO2 ratios from the scanning DOAS instruments of the Network for Observation of Volcanic and Atmospheric Change (NOVAC) or comparable networks. Parameters of the DOAS retrieval of both trace gases are given. The influence of co-adding spectra on the retrieval error and influences of radiative transfer will be investigated. Difficulties in the evaluation of spectroscopic data from monitoring instruments in volcanic environments and possible solutions are discussed. The new algorithm is demonstrated by evaluating data from the NOVAC scanning DOAS systems at Nevado del Ruiz, Colombia, encompassing almost 4 years of measurements between November 2009 and end of June 2013. This data set shows variations of the BrO/SO2 ratio several weeks prior to the eruption on 30 June 2012

    Periodicity in the BrO/SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015

    Get PDF
    We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of Cotopaxi volcano (Ecuador) for BrO/SO2 molar ratios. Statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about two weeks in a three month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around two weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO/SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Central result is the observation of a significant correlation between the BrO/SO2 molar ratios with the North-South and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 % and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO/SO2 molar ratios and the relative humidity in the local atmosphere resulted in a comparable correlation coefficient of about 33 %

    High emission rate of sulfuric acid from Bezymianny volcano, Kamchatka

    Get PDF
    High concentrations of primary sulfuric acid (H2SO4) in fumarolic gases and high emission rate of sulfuric acid aerosol in the plume were measured at Bezymianny volcano, an active dome-growing andesitic volcano in central Kamchatka. Using direct sampling, filter pack sampling, and differential optical absorption spectroscopy measurements, we estimated an average emission of H2SO4 at 243 ± 75 t/d in addition to an average SO2 emission of 212 ± 65 t/d. The fumarolic gases of Bezymianny correspond to arc gases released by several magma bodies at different stages of degassing and contain 25-92% of entrained air. H2SO4 accounts for 6-87 mol% of the total sulfur content, 42.8 mol% on average, and SO2 is the rest. The high H2SO4 in Bezymianny fumaroles can be explained by catalytic oxidation of SO2 inside the volcanic dome. Because sulfate aerosol is impossible to measure remotely, the total sulfur content in a plume containing significant H2SO4 may be seriously underestimated

    Modelling constraints on the emission inventory and on vertical dispersion for CO and SO2 in the Mexico City Metropolitan Area using Solar FTIR and zenith sky UV spectroscopy

    Get PDF
    Emissions of air pollutants in and around urban areas lead to negative health impacts on the population. To estimate these impacts, it is important to know the sources and transport mechanisms of the pollutants accurately. Mexico City has a large urban fleet in a topographically constrained basin leading to high levels of carbon monoxide ( CO). Large point sources of sulfur dioxide (SO2) surrounding the basin lead to episodes with high concentrations. An Eulerian grid model (CAMx) and a particle trajectory model ( FLEXPART) are used to evaluate the estimates of CO and SO2 in the current emission inventory using mesoscale meteorological simulations from MM5. Vertical column measurements of CO are used to constrain the total amount of emitted CO in the model and to identify the most appropriate vertical dispersion scheme. Zenith sky UV spectroscopy is used to estimate the emissions of SO2 from a large power plant and the Popocatepetl volcano. Results suggest that the models are able to identify correctly large point sources and that both the power plant and the volcano impact the MCMA. Modelled concentrations of CO based on the current emission inventory match observations suggesting that the current total emissions estimate is correct. Possible adjustments to the spatial and temporal distribution can be inferred from model results. Accurate source and dispersion modelling provides feedback for development of the emission inventory, verification of transport processes in air quality models and guidance for policy decisions

    A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements

    Get PDF
    A multi-rotor drone has been adapted for studies of volcanic gas plumes. This adaptation includes improved capacity for high-altitude and long-range, real-time SO2 concentration monitoring, long-range manual control, remotely activated bag sampling and plume speed measurement capability. The drone is capable of acting as a stable platform for various instrument configurations, including multi-component gas analysis system (MultiGAS) instruments for in situ measurements of SO2, H2S, and CO2 concentrations in the gas plume and portable differential optical absorption spectrometer (MobileDOAS) instruments for spectroscopic measurement of total SO2 emission rate, remotely controlled gas sampling in bags and sampling with gas denuders for posterior analysis on the ground of isotopic composition and halogens. The platform we present was field-tested during three campaigns in Papua New Guinea: in 2016 at Tavurvur, Bagana and Ulawun volcanoes, in 2018 at Tavurvur and Langila volcanoes and in 2019 at Tavurvur and Manam volcanoes, as well as in Mt. Etna in Italy in 2017. This paper describes the drone platform and the multiple payloads, the various measurement strategies and an algorithm to correct for different response times of MultiGAS sensors. Specifically, we emphasize the need for an adaptive flight path, together with live data transmission of a plume tracer (such as SO2 concentration) to the ground station, to ensure optimal plume interception when operating beyond the visual line of sight. We present results from a comprehensive plume characterization obtained during a field deployment at Manam volcano in May 2019. The Papua New Guinea region, and particularly Manam volcano, has not been extensively studied for volcanic gases due to its remote location, inaccessible summit region and high level of volcanic activity. We demonstrate that the combination of a multi-rotor drone with modular payloads is a versatile solution to obtain the flux and composition of volcanic plumes, even for the case of a highly active volcano with a high-altitude plume such as Manam. Drone-based measurements offer a valuable solution to volcano research and monitoring applications and provide an alternativespan idCombining double low line"page4256"/> and complementary method to ground-based and direct sampling of volcanic gases
    • 

    corecore