24 research outputs found

    Investigations of hippocampal astrocytes in lipopolysaccharide-preconditioned rats in the pilocarpine model of epilepsy

    Get PDF
    The present paper is the first work to determine the effect of lipopolysaccharide (LPS) in the pilocarpine model of epilepsy on the morphology of rat hippocampal astrocytes in vivo. The study involved adult male Wistar rats, which 72 hours prior to administration of pilocarpine hydrochloride (PILO) were intraperitoneally (ip) preconditioned with LPS at a dose of 0.5 mg/kg b.w. The control animals were administered (ip) saline or LPS alone. The astrocytes in the control animals displayed characteristic stellate morphology. Examinations of the astrocytes were performed on days one, three and 21 of the pilocarpine model of epilepsy (i.e. in the acute, silent and chronic periods). The astrocytes of the CA1 and CA3 pyramidal layers of the hippocampus were observed and analyzed at the structural and ultrastructural levels. It was demonstrated that on days one and three, glial cells from both the nonpreconditioned and the LPS-preconditioned animals displayed similar reactive changes, manifesting themselves as swelling of cell bodies, glial processes, and astrocytosis. Moreover, reduction in cell organelles aggregated at one pole and the presence of vacuoles were observed. The most pronounced astrogliosis and cell swelling occurred on day 21. We conclude that LPS has no effect on the morphology of astrocytes in the pilocarpine model of epilepsy, unlike the results obtained by other authors in vitro. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 219–224

    Anti-Legionella dumoffii activity of Galleria mellonella defensin and apolipophorin III

    Get PDF
    The gram-negative bacterium Legionella dumoffii is, beside Legionella pneumophila, an etiological agent of Legionnaires’ disease, an atypical form of pneumonia. The aim of this study was to determine the antimicrobial activity of Galleria mellonella defense polypeptides against L. dumoffii. The extract of immune hemolymph, containing a mixture of defense peptides and proteins, exhibited a dose-dependent bactericidal effect on L. dumoffii. The bacterium appeared sensitive to a main component of the hemolymph extract, apolipophorin III, as well as to a defense peptide, Galleria defensin, used at the concentrations 0.4 mg/mL and 40 μg/mL, respectively. L. dumoffii cells cultured in the presence of choline were more susceptible to both defense factors analyzed. A transmission electron microscopy study of bacterial cells demonstrated that Galleria defensin and apolipophorin III induced irreversible cell wall damage and strong intracellular alterations, i.e., increased vacuolization, cytoplasm condensation and the appearance of electron-white spaces in electron micrographs. Our findings suggest that insects, such as G. mellonella, with their great diversity of antimicrobial factors, can serve as a rich source of compounds for the testing of Legionella susceptibility to defense-related peptides and proteins

    Smoothies Reduce the “Bioaccessibility” of TiO<sub>2</sub> (E 171) in the Model of the In Vitro Gastrointestinal Tract

    No full text
    The food colorant E171 (TiO2) containing nano fractions can cause potential health problems. In the presented work, we used a “gastrointestinal tract” model (oral→large intestine) to “digest” a fruit smoothie in the presence of TiO2 nanoparticles and the Lactiplantibacillus plantarum B strain. The TiO2 migration was measured using the microfiltration membrane (0.2 µm; model of “TiO2 bioacessability”). We observed that the addition of the smoothie reduced the Ti content in the microfiltrate (reduced “bioacessability”) at the “mouth”, “stomach” and “large intestine” stages, probably due to the entrapment of Ti by the smoothie components. A significant decrease in Ti “bioaccessibility” at the “gastric” stage may have resulted from the agglomeration of nanoparticles at a low pH. Additionally, the presence of bacterial cells reduced the “bioaccessibility” at the “large intestine” stage. Microscopic imaging (SEM) revealed clear morphological changes to the bacterial cells in the presence of TiO2 (altered topography, shrunk-deformed cells with collapsed walls due to leakage of the content, indentations). Additionally, TiO2 significantly reduced the growth of the tested bacteria. It can be stated that the interactions (most probably entrapment) of TiO2 in the food matrix can occur during the digestion. This can influence the physicochemical properties, bioavailability and in vivo effect of TiO2. Research aimed at understanding the interactions between TiO2 and food components is in progress

    Quercetin suppresses heat shock-induced nuclear translocation of Hsp72

    Get PDF
    The effect of quercetin and heat shock on the Hsp72 level and distribution in HeLa cells was studied by Western blotting, indirect immunofluorescence and immunogold electron microscopy. In control cells and after quercetin treatment, Hsp72 was located both in the cytoplasm and in the nucleus in comparable amounts. After hyperthermia, the level of nuclear Hsp72 raised dramatically. Expression of Hsp72 in cytoplasm was also higher but not to such extent as that observed in the nucleus. Preincubation of heated cells with quercetin inhibited strong Hsp72 expression observed after hyperthermia and changed the intracellular Hsp72 distribution. The cytoplasmic level of protein exceeded the nuclear one, especially around the nucleus, where the coat of Hsp72 was noticed. Observations indicating that quercetin was present around and in the nuclear envelope suggested an involvement of this drug in the inhibition of nuclear translocation. Our results indicate that pro-apoptotic activity of quercetin may be correlated not only with the inhibition of Hsp72 expression but also with suppression of its migration to the nucleus

    Substitutional analysis

    No full text
    Classic monograph, suitable for advanced undergraduates and graduate students. Topics include calculus of permutations and tableaux, semi-normal representation, orthogonal and natural representations, group characters, and substitutional equations. 1968 edition

    Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical and vibrational spectroscopic studies.

    No full text
    Compounds belonging to the group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diols exhibit a broad spectrum of biological activity, including antibacterial, antifungal, and anticancer properties. The mechanism of the antifungal activity of compounds from this group has not been described to date. Among the large group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diol derivatives, the compound 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol, abbreviated as C1, was revealed to be one of the most active agents against pathogenic fungi, simultaneously with the lowest toxicity to human cells. The C1 compound is a potent antifungal agent against different Candida species, including isolates resistant to azoles, and molds, with MIC100 values ranging from 8 to 96 μg/ml. The antifungal activity of the C1 compound involves disruption of the cell wall biogenesis, as evidenced by the inability of cells treated with C1 to maintain their characteristic cell shape, increase in size, form giant cells and flocculate. C1-treated cells were also unable to withstand internal turgor pressure causing protoplast material to leak out, exhibited reduced osmotic resistance and formed buds that were not covered with chitin. Disturbances in the chitin septum in the neck region of budding cells was observed, as well as an uneven distribution of chitin and β(1→3) glucan, and increased sensitivity to substances interacting with wall polymerization. The ATR-FTIR spectral shifts in cell walls extracted from C. albicans cells treated with the C1 compound suggested weakened interactions between the molecules of β(1→3) glucans and β(1→6) glucans, which may be the cause of impaired cell wall integrity. Significant spectral changes in the C1-treated cells were also observed in bands characteristic for chitin. The C1 compound did not affect the ergosterol content in Candida cells. Given the low cytotoxicity of the C1 compound to normal human dermal fibroblasts (NHDF), it is possible to use this compound as a therapeutic agent in the treatment of surface and gastrointestinal tract mycoses
    corecore