4 research outputs found

    Promoting bio-based building materials as a means of bridging the urban-rural divide in Serbia

    Get PDF
    Due to the difficult economic situation within Serbia, rural areas find themselves on the margins of investment and development, creating a deep rural-urban divide. Much of Serbia can be characterized as rural with a large segment of the population living in rural settlements defined by socio-economic stagnation or degradation. Revitalizing rural regions is thus important for the socio-economic wellbeing of the entire country and mitigating the rural-urban divide can be key to the sustainable development of urban areas. Much of the built environment in Serbia has a low level of energy efficiency and though public perception has improved, the focus is on improving operational energy, while the embodied environmental impact of building materials is rarely considered. This paper details and analyses the main problems facing rural areas in Serbia. As agriculture is still the primary economic activity in rural areas, it suggests that the development and application of bio-based building materials created from the by-products of agriculture, can be an important element of further strategies for sustainable development in Serbia. In particular industrial hemp, which was once an important and abundant crop in Serbia, is currently experiencing a significant resurgence. This paper demonstrates that hemp-lime concrete may be a particularly suitable building material for encouraging new economic activity in rural areas and promoting sustainable design in both rural and urban areas

    Creating life cycle assessment models for hemp lime concrete in the context of Serbia

    No full text
    ГрађСвинска ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜Π° јС заслуТна Π·Π° Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ СмисијС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π° којС Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ ΡƒΡ‚ΠΈΡ‡Ρƒ Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρƒ срСдину. Π‘ΡƒΠΎΡ‡Π΅Π½ΠΈ са климатским ΠΏΡ€ΠΎΠΌΠ΅Π½Π°ΠΌΠ° ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ Сколошким ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈΠΌΠ° ΠΏΡ€ΠΈΠΌΠ΅Π½Π° Сколошки ΠΎΠ΄Ρ€ΠΆΠΈΠ²ΠΈΡ˜ΠΈΡ… грађСвинских ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π° ΠΏΠΎΡΡ‚Π°Ρ˜Π΅ високи ΠΏΡ€ΠΈΠΎΡ€ΠΈΡ‚Π΅Ρ‚. ГрађСвински ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ Π½Π° биолошкој основи ΠΌΠΎΠ³Ρƒ Π±ΠΈΡ‚ΠΈ Сколошки исправни ΠΏΠΎΡˆΡ‚ΠΎ ΠΌΠΎΠ³Ρƒ Π΄Π° користС ΠΎΠ±Π½ΠΎΠ²Ρ™ΠΈΠ²Π΅ сировинС којС Ρ‚ΠΎΠΊΠΎΠΌ Ρ€Π°Π·Π²ΠΎΡ˜Π° Π²Π΅Π·ΡƒΡ˜Ρƒ ΡƒΠ³Ρ™Π΅Π½ диоксид фотосинтСзом ΠΈ Π½Π° ΠΊΡ€Π°Ρ˜Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ Π²Π΅ΠΊΠ° сС ΠΌΠΎΠ³Ρƒ Ρ€Π°Π·Π³Ρ€Π°Π΄ΠΈΡ‚ΠΈ ΠΈΠ»ΠΈ Ρ€Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€Π°Ρ‚ΠΈ. Π’ΠΎΠΊΠΎΠΌ XX ΠΈ ΠΏΠΎΡ‡Π΅Ρ‚ΠΊΠΎΠΌ XXI Π²Π΅ΠΊΠ° ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡ˜Π΅ СколошкС одрТивости ΠΈ СнСргСтскС Сфикасности нису Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½Π΅ Ρƒ Π³Ρ€Π°Π΄ΠΈΡ‚Π΅Ρ™ΡΠΊΠΎΡ˜ пракси Ρƒ Π‘Ρ€Π±ΠΈΡ˜ΠΈ. Π£Π²ΠΎΡ’Π΅ΡšΠ΅ΠΌ β€žΠŸΡ€Π°Π²ΠΈΠ»Π½ΠΈΠΊΠ° Π·Π° СнСргСтску Сфикасност Π·Π³Ρ€Π°Π΄Π°β€œ Ρƒ 2011. Π³ΠΎΠ΄ΠΈΠ½ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½ јС ΠΎΠΊΠ²ΠΈΡ€ Π·Π° смањивањС ΠΏΠΎΡ‚Ρ€ΠΎΡˆΡšΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Π΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Ρƒ ΠΎΠ±Ρ˜Π΅ΠΊΡ‚ΠΈΠΌΠ°, Π°Π»ΠΈ ΡƒΠ³Ρ€Π°Ρ’Π΅Π½ΠΈ Сколошки ΡƒΡ‚ΠΈΡ†Π°Ρ˜ΠΈ који су послСдица грађСвинскС праксС су ΠΈ Π΄Π°Ρ™Π΅ Ρ„ΠΎΡ€ΠΌΠ°Π»Π½ΠΎ запостављСни. Π£ΠΏΠΎΡ€Π΅Π΄ΠΎ са свС Π²Π΅Ρ›ΠΈΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΠΎΠ²Π°ΡšΠ΅ΠΌ Π·Π° ΡƒΠ·Π³ΠΎΡ˜ ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΠ΅ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅, Π±Π΅Ρ‚ΠΎΠ½ ΠΎΠ΄ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅ ΠΈ ΠΊΡ€Π΅Ρ‡Π° јС ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ ΠΊΠ°ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΎ Сколошки исправан грађСвински ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π» који сС ΠΌΠΎΠΆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΠΈ Ρƒ Π½ΠΎΠ²ΠΎΠ³Ρ€Π°Π΄ΡšΠΈ, Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΡΠΊΠΎΡ˜ ΡΠ°Π½Π°Ρ†ΠΈΡ˜ΠΈ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… ΠΎΠ±Ρ˜Π΅ΠΊΠ°Ρ‚Π° ΠΈ Ρ€Π΅ΡΡ‚Π°ΡƒΡ€Π°Ρ†ΠΈΡ˜ΠΈ ΠΎΠ±Ρ˜Π΅ΠΊΠ°Ρ‚Π° градитСљског наслСђа. Π€ΠΎΡ€ΠΌΠΈΡ€Π° сС мСшањСм ΠΏΠΎΠ·Π΄Π΅Ρ€Π° ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΠ΅ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅ са ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΠΌ Π²Π΅Π·ΠΈΠ²ΠΎΠΌ Π½Π° Π±Π°Π·ΠΈ ΠΊΡ€Π΅Ρ‡Π° ΠΈ Π²ΠΎΠ΄ΠΎΠΌ ΠΈ прСвасходно користи Π·Π° ΠΈΠ·Π³Ρ€Π°Π΄ΡšΡƒ Π·ΠΈΠ΄ΠΎΠ²Π° Ρƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΈ са Π΄Ρ€Π²Π΅Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ˜ΠΎΠΌ ΠΎΠΊΠΎ којС сС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π» ΠΈΠ·Π»ΠΈΠ²Π°. ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΏΡ€ΠΎΡ†Π΅Π½Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ циклуса ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ Ρ†ΠΈΡ™Π° Π΄Π° Π΄Π΅Ρ„ΠΈΠ½ΠΈΡˆΠ΅ Сколошки ΡƒΡ‚ΠΈΡ†Π°Ρ˜ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ Π²Π΅ΠΊΠ° Π±Π΅Ρ‚ΠΎΠ½Π° ΠΎΠ΄ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅ ΠΈ ΠΊΡ€Π΅Ρ‡Π° Ρƒ контСксту Π‘Ρ€Π±ΠΈΡ˜Π΅. ΠšΡ€ΠΎΠ· ΡΠ΅Ρ€ΠΈΡ˜Ρƒ Π°Π½Π°Π»ΠΈΠ·Π° осСтљивости којС ΠΈΡΠΏΠΈΡ‚ΡƒΡ˜Ρƒ СколошкС ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π΅ Π²Π°Ρ€ΠΈΡ€Π°ΡšΠ° ΠΊΡ™ΡƒΡ‡Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° ΠΏΠΎΠΏΡƒΡ‚ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° вСзивања CO2 Ρƒ ΠΏΠΎΠ·Π΄Π΅Ρ€Ρƒ, Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Π²Π΅Π·ΠΈΠ²Π°, приноса ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΠ΅ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅, Ρ€Π°Π·Π΄Π°Ρ™ΠΈΠ½Π΅ ΠΏΡ€Π΅Π²ΠΎΠ·Π° сировина Π½Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Ρƒ ΠΈ стСпСна Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ° грађСвинског ΠΎΡ‚ΠΏΠ°Π΄Π° ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Π½Π° су Ρ‚Ρ€ΠΈ основна ΡΡ†Π΅Π½Π°Ρ€ΠΈΡ˜Π° која ΡƒΠΊΠ°Π·ΡƒΡ˜Ρƒ Π½Π° ΡˆΠΈΡ€ΠΎΠΊ спСктар Π΅ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈΡ… ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ циклуса Π·ΠΈΠ΄Π° ΠΎΠ΄ Π±Π΅Ρ‚ΠΎΠ½Π° ΠΎΠ΄ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅ ΠΈ ΠΊΡ€Π΅Ρ‡Π°. Π˜ΡΠΏΠΈΡ‚Π°Π½ΠΈ су ΠΈ Сколошки ΡƒΡ‚ΠΈΡ†Π°Ρ˜ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΎΠ³ стСпСна Ρ€Π°Π·Π³Ρ€Π°Π΄ΡšΠ΅ ΠΏΠΎΠ·Π΄Π΅Ρ€Π° Π½Π° ΠΊΡ€Π°Ρ˜Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ Π²Π΅ΠΊΠ°, ΠΏΡ€Π΅Ρ„Π°Π±Ρ€ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π΅ Π±Π΅Ρ‚ΠΎΠ½Π° ΠΎΠ΄ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅ ΠΈ ΠΊΡ€Π΅Ρ‡Π° Ρƒ Π±Π»ΠΎΠΊΠΎΠ²Π΅ ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡ˜Π° ΠΎΠ±Ρ€Π°Π΄Π΅ Π·ΠΈΠ΄Π°. ΠŸΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ΠΌ са ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΈΠΌ циклусом Ρ‚ΠΈΠΏΠΈΡ‡Π½Π΅ грађСвинскС праксС Ρƒ Π½ΠΎΠ²ΠΎΠ³Ρ€Π°Π΄ΡšΠΈ ΠΈ ΡΠ°Π½Π°Ρ†ΠΈΡ˜ΠΈ стамбСних ΠΎΠ±Ρ˜Π΅ΠΊΠ°Ρ‚Π° Ρƒ Π‘Ρ€Π±ΠΈΡ˜ΠΈ, ΡƒΠΎΡ‡Π΅Π½ΠΎ јС Π΄Π° јС Π±Π΅Ρ‚ΠΎΠ½ ΠΎΠ΄ ΠΊΠΎΠ½ΠΎΠΏΡ™Π΅ ΠΈ ΠΊΡ€Π΅Ρ‡Π° Сколошки исправан грађСвински ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π» ΠΈ Π΄Π° јС супСриоран Ρƒ Π³ΠΎΡ‚ΠΎΠ²ΠΎ свим Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ΠΈΠΌ Сколошким ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Ρ™ΠΈΠΌΠ°.The construction industry is responsible for significant emissions of substances that negatively impact the environment. Faced with climate change and other environmental issues, the use of more environmentally sustainable building materials has become a high priority. Bio-based building materials can be environmentally sustainable as they can make use of renewable raw materials that sequester carbon dioxide through photosynthesis and can biodegrade or be recycled at end of life. During the XX century and beginning of the XXI century the concepts of environmental sustainability and energy efficiency weren’t particularly considered in the Serbian construction industry. With the implementation of the β€œRulebook for the energy efficiency of buildings” in 2011 a framework for the reduction of operational energy in buildings was formed, but the embodied environmental impacts of construction practices are still formally neglected. In conjuction with the rising interest for growing industrial hemp, hemp-lime concrete is identified as a potentially environmentally sustainable building material that can be used in new builds, the energy renovation of existing buildings and the restoration of historical buildings. It’s formed by mixing industrial hemp shives with a composite lime based binder and water and is primarily used for the construction walls by casting around a timber stud frame. Using life cycle assessment methodology the study aims to define the life cycle environmental impacts of hemp-lime concrete in the context of Serbia. Through a series of sensitivity analyses that examine the environmental imapacts of varying key parameters like the hemp shiv carbon dioxide sequestration factor, binder carbonation factor, industrial hemp yield, material transport distance and building site waste formation rate, three primary scenarios demonstrating the wide range of environmental impacts ofassociated with the life cycle of hemp-lime concrete wall are developed. The environmental impacts of variable hemp shiv degradation factors at end of life, prefabricating hemp-lime concrete into blocks and various wall finishes were also examined. Through comparisons with the life cycle of typical residential construction practices in Serbia, it is observed that hemp-lime concrete can be considered an environmentally sustainable building material and that it is superior in virtually all of the examined environmental impact categories

    Life cycle assessment of hemp-lime concrete wall constructions: The impact of wall finish type and renewal regimes

    No full text
    Using sustainable building materials is one of the key methods for minimising the negative environmental impacts of the global construction industry. Bio-based buildings building materials, such as hemp-lime concrete, are considered more sustainable, as they make use of a renewable raw material and can sequester CO2 from the atmosphere. Studies have shown that hemp-lime concrete can have a favourable global warming potential, though the life cycle of building materials affects a wide variety of negative environmental phenomena that should also be considered. Studies examining the life cycle of hemp-lime concrete have so far primarily focused on the material itself. Though the exterior surface of a hemp-lime concrete wall needs to be protected and have a finish applied to it, few studies have considered the environmental impacts of coated hemp-lime concrete wall constructions. Using life cycle assessment methodology, through a wide range of environmental impact categories, the study analysed the environmental impacts of applying lime putty and sand coatings to a hemp-lime concrete wall in pessimistic, average and optimistic scenarios, It also compared the environmental impacts of four types of appropriate wall finishes and the impacts of applying varying finish renewal regimes in the use phase. It was found that applying lime putty and sand finishes to the exterior and interior surface of a hemp lime concrete wall increased the total global warming potential by 19.054–30.793 kgCO2eq and had a noticeable effect on all other impact categories. It was found that while no one finish type could be considered globally superior to the others, in a majority of circumstances applying lime-based coatings resulted in lower embodied environmental impacts, than applying a ventilated faΓ§ade with timber cladding

    Life cycle greenhouse gas emissions of hemp-lime concrete wall constructions in Serbia: The impact of carbon sequestration, transport, waste production and end of life biogenic carbon emission

    No full text
    The construction industry contributes to climate change through significant greenhouse gas emissions. Utilising sustainable building materials with low embodied environmental impacts and low greenhouse gas emissions is key to future sustainable development. Bio-based materials, such as hemp-lime concrete, possess environmental advantages as they make use of a renewable raw material and can sequester CO2 from the atmosphere. Through the use of life cycle assessment methodology the study analyses the greenhouse gas emissions associated with the life cycle of a hemp-lime concrete wall and examines the effects of variations that can arise during the life cycle of the material. Sensitivity analyses were used to examine the effects of varying the hemp shiv sequestration factor, binder carbonation factor, gate to site transport distances and raw material construction waste on greenhouse gas emissions, culminating in the creation of three primary emission scenarios (average, pessimistic and optimistic). It was found that the examined variables can have a large impact on greenhouse gas emissions and the environmental perception of the material, as the optimistic life cycle scenario had a negative global warming potential (βˆ’9.696kgCO2eq.), while the pessimistic scenario had a positive global warming potential (10.165kgCO2eq.). Additionally alternative end of life scenarios were developed to examine the effects of varying hemp shiv degradability at the end of life stage, demonstrating the potentially large impacts a high factor of degradable organic carbon can have on life cycle greenhouse gas emissions
    corecore