20 research outputs found

    PFG NMR and Bayesian analysis to characterise non-Newtonian fluids

    Get PDF
    Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and there therefore exists a need for methods that provide online, or inline, rheological characterisation necessary for process control and optimisation over timescales of minutes or less. Nuclear magnetic resonance (NMR) offers a non-invasive technique for this application, without limitation on optical opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable estimation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by a flow behaviour index n, yield stress Ï„0_{0}, and consistency factor k, by analysis of the signal in q-space. This approach eliminates the need for velocity image acquisition and expensive gradient hardware. We investigate the robustness of the proposed Bayesian NMR approach to noisy data and reduced sampling using simulated NMR data and show that even with a signal-to-noise ratio (SNR) of 100, only 16 points are required to be sampled to provide rheological parameters accurate to within 2% of the ground truth. Experimental validation is provided through an experimental case study on Carbopol 940 solutions (model Herschel-Bulkley fluids) using PFG NMR at a 1^{1}H resonance frequency of 85.2MHz; for SNR>1000, only 8 points are required to be sampled. This corresponds to a total acquisition time of <60s and represents an 88% reduction in acquisition time when compared to MR flow imaging. Comparison of the shear stress-shear rate relationship, quantified using Bayesian NMR, with non-Bayesian NMR methods demonstrates that the Bayesian NMR approach is in agreement with MR flow imaging to within the accuracy of the measurement. Furthermore, as we increase the concentration of Carbopol 940 we observe a change in rheological characteristics, probably due to shear history-dependent behaviour and the different geometries used. This behaviour highlights the need for online, or inline, rheological characterisation in industrial process applications.AJS and LFG wish to thank the EPSRC (Grant numbers EP/F047991/1 and EP/K039318/1) and TWB wishes to thank the EPSRC and Johnson Matthey plc for financial support

    Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis.

    Get PDF
    Conventional rheological characterisation using nuclear magnetic resonance (NMR) typically utilises spatially-resolved measurements of velocity. We propose a new approach to rheometry using pulsed field gradient (PFG) NMR which readily extends the application of MR rheometry to single-axis gradient hardware. The quantitative use of flow propagators in this application is challenging because of the introduction of artefacts during Fourier transform, which arise when realistic sampling strategies are limited by experimental and hardware constraints and when particular spatial and temporal resolution are required. The method outlined in this paper involves the cumulant analysis of the acquisition data directly, thereby preventing the introduction of artefacts and reducing data acquisition times. A model-dependent approach is developed to enable the pipe-flow characterisation of fluids demonstrating non-Newtonian power-law rheology, involving the use of an analytical expression describing the flow propagator in terms of the flow behaviour index. The sensitivity of this approach was investigated and found to be robust to the signal-to-noise ratio (SNR) and number of acquired data points, enabling an increase in temporal resolution defined by the SNR. Validation of the simulated results was provided by an experimental case study on shear-thinning aqueous xanthan gum solutions, whose rheology could be accurately characterised using a power-law model across the experimental shear rate range of 1-100 s(-1). The flow behaviour indices calculated using this approach were observed to be within 8% of those obtained using spatially-resolved velocity imaging and within 5% of conventional rheometry. Furthermore, it was shown that the number of points sampled could be reduced by a factor of 32, when compared to the acquisition of a volume-averaged flow propagator with 128 gradient increments, without negatively influencing the accuracy of the characterisation, reducing the acquisition time to only 3% of its original value.AJS wishes to thank the EPSRC (grant numbers EP/F047991/1 and EP/K039318/1) and TB wishes to thank the EPSRC and Johnson Matthey plc for financial support.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S1090780715000798#

    Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow.

    Get PDF
    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter >200μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument

    Views from within a narrative : Evaluating long-term human-robot interaction in a naturalistic environment using open-ended scenarios

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Date of acceptance: 16/06/2014This article describes the prototyping of human–robot interactions in the University of Hertfordshire (UH) Robot House. Twelve participants took part in a long-term study in which they interacted with robots in the UH Robot House once a week for a period of 10 weeks. A prototyping method using the narrative framing technique allowed participants to engage with the robots in episodic interactions that were framed using narrative to convey the impression of a continuous long-term interaction. The goal was to examine how participants responded to the scenarios and the robots as well as specific robot behaviours, such as agent migration and expressive behaviours. Evaluation of the robots and the scenarios were elicited using several measures, including the standardised System Usability Scale, an ad hoc Scenario Acceptance Scale, as well as single-item Likert scales, open-ended questionnaire items and a debriefing interview. Results suggest that participants felt that the use of this prototyping technique allowed them insight into the use of the robot, and that they accepted the use of the robot within the scenarioPeer reviewe

    Transcriptome Analysis Reveals Strain-Specific and Conserved Stemness Genes in Schmidtea mediterranea

    Get PDF
    The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species

    Brain-Computer Interface Games: Towards a Framework

    Get PDF
    The brain-computer interface (BCI) community has started to consider games as potential applications, while the game community has started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. This not only adds to the workload of developers but also damages the reputation of BCI games. As a response to this issue, in this chapter, a BCI game framework is presented that was constructed with respect to the research conducted in both the BCI and the game communities. Developers can situate their BCI games within this framework, benefit from the provided guidelines, and extend the framework further
    corecore