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Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and
there therefore exists a need for methods that provide online, or inline, rheological characterisation nec-
essary for process control and optimisation over timescales of minutes or less. Nuclear magnetic reso-
nance (NMR) offers a non-invasive technique for this application, without limitation on optical
opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable esti-
mation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by
a flow behaviour index n, yield stress s0, and consistency factor k, by analysis of the signal in q-space. This
approach eliminates the need for velocity image acquisition and expensive gradient hardware.
We investigate the robustness of the proposed Bayesian NMR approach to noisy data and reduced sam-

pling using simulated NMR data and show that even with a signal-to-noise ratio (SNR) of 100, only 16
points are required to be sampled to provide rheological parameters accurate to within 2% of the ground
truth. Experimental validation is provided through an experimental case study on Carbopol 940 solutions
(model Herschel-Bulkley fluids) using PFG NMR at a 1H resonance frequency of 85.2 MHz; for SNR > 1000,
only 8 points are required to be sampled. This corresponds to a total acquisition time of <60 s and rep-
resents an 88% reduction in acquisition time when compared to MR flow imaging.
Comparison of the shear stress-shear rate relationship, quantified using Bayesian NMR, with non-

Bayesian NMR methods demonstrates that the Bayesian NMR approach is in agreement with MR flow
imaging to within the accuracy of the measurement. Furthermore, as we increase the concentration of
Carbopol 940 we observe a change in rheological characteristics, probably due to shear history-
dependent behaviour and the different geometries used. This behaviour highlights the need for online,
or inline, rheological characterisation in industrial process applications.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Many fluids encountered in everyday life, such as mayonnaise,
toothpaste and shaving foam, exhibit both solid- and liquid-like
behaviour. This non-Newtonian behaviour may be explained by
considering the concept of yield stress, a parameter that quantifies
the minimum shear stress that is required to be applied to a fluid
before deformational flow can begin to occur. Fluids exhibiting
yield stress behaviour demonstrate solid-like behaviour at low
applied stresses, below the yield stress, but liquid-like behaviour
at high applied stresses [1]. Although the existence of yield stress
has been questioned [2,3], it nevertheless provides a convenient
way for engineers to quantify (or predict) rheological behaviour.
For example, the rheological behaviour of many fluids can be accu-
rately described using the Herschel-Bulkley constitutive equation:

sð _cÞ ¼ s0 þ k _cn; ð1Þ

where s is shear stress, _c is shear rate, s0 is the yield stress of the
fluid, and k and n represent the consistency factor and flow beha-
viour index, respectively. The relationship between s and _c, i.e.
the flow curve sð _cÞ, can then be described conveniently using only
rheological parameters appropriate to the Herschel-Bulkley consti-
tutive equation. However, a major weakness of the Herschel-
Bulkley constitutive equation is its inability to unambiguously
establish the rheological parameters, since different sets of these
parameters can provide equivalent fits to the experimental data [4].

Yield stress behaviour can be affected by changes in sample pH
and concentration [5], with such properties responsible for
changes in the flow curve. This can be detrimental to many
industrial processes, particularly those involving flow [6]. The
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Fig. 1. Displacement profiles generated using Eq. (4) for three example fluids; with
( ) n = 1.0 and r0=R = 0.0, ( ) n = 0.5 and r0=R = 0.5, and ( ) n = 0.5 and
r0=R = 0.8. Fluid displacement and radial position are represented as a fraction of
the mean fluid displacement and pipe radius, respectively.
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characterisation and monitoring of the flow curve of fluids in these
applications is therefore critical for process control and optimisa-
tion. In some cases, however, the flow curve is no longer a measure
of the material properties of the fluid but depends on the shear his-
tory [1,7,8]. For this reason, rheological characterisation should be
performed online, or inline, and in real-time, with the use of offline
techniques, e.g. conventional benchtop rheometry methods [9],
unsuitable for this application. Furthermore, there exists a need
to obtain detailed information about the flow field generated by
the device inducing deformational flow [10] to enable the observa-
tion and quantification of flow phenomena, including wall slip
[9,11]. Whilst optical methods such as laser Doppler [12] and ultra-
sound velocimetry [13] enable the visualisation of the flow field,
both involve tracer particles and are limited in the sample geome-
tries that can be used. Light scattering techniques are also limited
to optically transparent or semi-transparent fluid flows. In con-
trast, nuclear magnetic resonance (NMR) enables the non-
invasive study of translational motion without limitation on opti-
cal opacity.

The study of translational motion using NMR was first realised
by Carr and Purcell [14] through the exploitation of the sensitivity
of spin-spin relaxation times. This has since developed, with phase
encoding NMR techniques now widely considered to be the most
robust and quantitative way of measuring flow [15]. Such tech-
niques are often coupled with magnetic resonance (MR) imaging
hardware, in a method termed MR flow imaging [16], to permit
spatially resolved measurements of velocity in one, two, or three
spatial dimensions. Arola et al. [17–19] used one-dimensional
(1D) measurements of velocity to quantify fluid displacement as
a function of radial position in a cylindrical pipe for non-
Newtonian fluids demonstrating power-law [17,18] and
Herschel-Bulkley [19] rheological behaviour. A pipe flow geometry
is ideally suited to online, or inline, application. Shear rate data
were evaluated through the linear least squares (LLS) regression
of an even-order polynomial to the displacement data, followed
by differentiation of the regression data. Measurements of pressure
drop per unit length, dP=dL, were then used to quantify the shear
stress at the wall, sw, using the following equation:

sw ¼ dP
dL

R
2
; ð2Þ

which is derived from a force balance and where R represents the
pipe radius. From Eq. (2) it can be shown that:

s ¼ r
R
sw; ð3Þ

with r the radial position. Note that s increases linearly from 0 at
the centre of the pipe to sw at the wall and is independent of the
rheological behaviour of the fluid under study. Using this approach,
it is possible to characterise the flow curve over a range of shear
rates in only a single measurement. A regression of a constitutive
equation, such as Eq. (1), to the experimental flow curve may then
be performed to provide estimates of the rheological parameters.
The accuracy of this approach is sensitive to the accuracy of the
pressure drop and displacement data obtained, therefore demand-
ing adequate spatial and velocity resolution [17–19]. Arola et al.
[19] suggest that over 100 spatially resolved velocity data points
may be required to achieve an error in s0 of less than 2% when com-
pared with conventional rheometry methods. Although a number of
fast imaging sequences exist [20–22], many of these are unable to
provide the spatial and/or temporal resolution required to ensure
accurate rheological characterisation in real-time, and so the online,
or inline, use of MR flow imaging in this application is challenging.
By using the PFG method introduced in this work, MR rheometry is
extended to single-axis gradient hardware, thereby eliminating the
requirement of spatial encoding and enabling a substantial
reduction in data acquisition times such that online, or inline, mea-
surements are now possible. This has potential for use in process
control and optimisation. The principles underlying the develop-
ments presented in this work are now introduced.

For fluids demonstrating Herschel-Bulkley rheological beha-
viour, Eqs. (1) and (3) can be used to show that fluid displacement,
f, in a cylindrical pipe flow geometry is described as a function of r
by:

fðr;n; r0Þ ¼
fmax 0 6 r < r0;

fmax 1� r�r0
R�r0

� �nþ1
n

� �
r0 6 r 6 R;

8<
: ð4Þ

where fmax is the maximum fluid displacement. Fig. 1 shows dis-
placement profiles obtained using Eq. (4) for three example fluids
demonstrating Newtonian and non-Newtonian behaviour; n = 1.0
and r0=R = 0.0, n = 0.5 and r0=R = 0.5, and n = 0.5 and r0=R = 0.8. It
is seen in Fig. 1 that, for a fluid demonstrating Herschel-Bulkley rhe-
ological behaviour, there exists a plug flow region at the centre of
the pipe bounded by r0 and determined by evaluating Eq. (3) at
s ¼ s0; within this plug flow region, s 6 s0 and _c = 0 s�1. Fluid dis-
placement within the region bounded by r0 and R increases from 0
at R to fmax at r0. An increase in r0 is responsible for an increase in
the width of the plug flow region, a flattening of the displacement
profile and a reduction in fmax. Similar trends are observed for a
decrease in n. Changes in the rheological parameters of the fluid
under study are, therefore, expected to induce changes in the dis-
placement profiles and associated volume-averaged displacement
probability distributions, or flow propagators [23]. Flow propaga-
tors completely characterise the flow under study [24] and are
obtained through Fourier transform of the PFG NMR signal sampled
in q-space, SðqÞ:

SðqÞ ¼
Z

pðfÞei2pqfdf; ð5Þ

where pðfÞ defines the flow propagator in terms of f and
q ¼ ð1=2pÞcgd, with c the gyromagnetic ratio of the nucleus under
study and g and d the magnitude and duration of the flow encoding
gradient, respectively [25]. By controlling g it is possible to traverse
q-space, with the field-of-flow (FOF) defined by the reciprocal of the
sampling resolution in q-space and the velocity resolution of the
flow propagator defined by the reciprocal of the range of q-space
sampled. The signal acquired in q-space and the flow propagator
represent mutually conjugate Fourier pairs, and so Fourier trans-
form of SðqÞ provides pðfÞ representative of the flow under study.
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The use of flow propagators for rheological characterisation was
first proposed theoretically by McCarthy et al. [26], with pðfÞ
defined by the rheological parameters of the fluid under study
[27]. Whilst differences in the shape of the flow propagator have
been reported for a range of Newtonian and non-Newtonian fluids
[28], the quantitative use of flow propagators in this application
remains challenging due to hardware limitations, i.e. gradient
hardware, and practical constraints, such as data acquisition times,
that limit the range of q-space accessible. The signal sampled at the
limits of q-space will often not approach zero, and so the introduc-
tion of truncation artefacts into the flow propagator during Fourier
transform may also be experimentally unavoidable. To this end,
Blythe et al. [27] have recently exploited the sensitivity of SðqÞ to
changes in pðfÞ to enable the direct analysis of acquisition data,
using cumulant analysis, thus removing the need for Fourier trans-
form and preventing the introduction of truncation artefacts. Fur-
thermore, strict sampling requirements are removed, allowing
considerable reductions in acquisition times. This method was suc-
cessfully applied to estimate n describing several power-law fluids.
However, these measurements cannot be used for the unambigu-
ous estimation of n, s0, and k describing Herschel-Bulkley fluids
due to the known interdependence between n, s0, and k [29].

In this work, a Bayesian NMR approach is developed which esti-
mates n, s0 and k, i.e. the flow curve, describing Herschel-Bulkley
fluids. Furthermore, we show that these measurements can be
achieved in as little as 60 s. We systematically investigate the
robustness of our proposed Bayesian NMR approach to reduced
sampling and noisy data using data generated through numerical
simulations to determine the minimum number of data points
needed to characterise the rheology with reasonable accuracy, here
defined as ±5%, this error being typical of conventional rheometry
methods [9]. Also considered is the sensitivity of the Bayesian NMR
approach to changes in n and r0=R of the flow under study. The
results of the simulations are validated through an experimental
study of model Herschel-Bulkley fluids, namely Carbopol 940 solu-
tions [30,31], flowing within a cylindrical pipe. The rheological
parameters and flow curves obtained using the Bayesian NMR
approach are then compared with the same data obtained from
MR flow imaging and conventional rheometry methods.
simulate flow propagator for 
particular rheological parameters 

determine expected signal using 
simulated flow propagator 

generate likelihood function given 
expected signal and noise 

calculate posterior probability, 
using likelihood functions, for all 

rheological parameters 

acquire experimental/simulated 
signal 

Fig. 2. Block diagram outlining the key stages in the proposed Bayesian NMR
approach.
2. Model development

Bayesian analysis is a probabilistic method that has previously
been applied in a variety of NMR applications [32–38]; it has been
shown to improve the accuracy of flow measurements by the use
of reduced sampling [33], and to enable the recovery of NMR spec-
tra [32] and particle size distributions [37] from noisy data. In
Bayesian analysis, the state of the system, h, is inferred from a
set of experimental measurements, ŷ, using the posterior probabil-
ity density function, pðhjŷÞ:

pðhjŷÞ / pðŷjhÞpðhÞ; ð6Þ

where pðŷjhÞ is the likelihood function and pðhÞ incorporates prior
knowledge. In this work we extend current methodologies to enable
the estimation of Herschel-Bulkley rheological parameters using
PFG NMR, where ŷ corresponds to the measured signal in q-space,
SðqÞ, and h corresponds to n and r0=R describing the flow under
study. Note that, in accordance with Eq. (3), s0=sw and r0=R are
interchangeable, thus enabling the estimation of s0 if sw is known.
The likelihood function then describes the variation in SðqÞ for a
particular combination of n and r0=R, and the prior describes what
we already know about the probabilities of the values of n and
r0=R. A prior in which the probabilities within a specified range
are identical is known as a simple uninformative prior. The
development of a Bayesian NMR approach enabling the estimation
of these parameters is illustrated in Fig. 2 and will now be outlined.

The signal in q-space, SðqÞ, is measured in quadrature in the
presence of Gaussian noise such that the likelihood function,
pðSðqÞjn; r0Þ, takes the form:

pðSðqÞjn; r0Þ ¼ 1
r
ffiffiffiffiffiffiffi
2p

p e�
ðjSðqÞ�f ðq;n;r0 ÞjÞ2

2r2 ; ð7Þ

for flow that is stable over the experimental duration, i.e. laminar
flow, and where f ðq;n; r0Þ is the expected complex signal in q-
space for a particular n and r0=R, and r is the standard deviation
of the Gaussian noise in the real and imaginary channels. Here, r
is obtained from the experimental dataset. In addition to a variation
of the phase of SðqÞ and f ðq;n; r0Þ with q, SðqÞ may possess an addi-
tional phase offset due to the receiver. A comparison between SðqÞ
and f ðq;n; r0Þ requires this phase offset be removed through the
phase correction of SðqÞ, such that the phase of the signal at the cen-
tre of q-space is zero.

In order to determine pðSðqÞjn; r0Þ, we must first obtain f ðq;n; r0Þ
numerically. It is known from Eq. (5) that SðqÞ is given by the Four-
ier transform of pðfÞ. An analytical expression defining pðfÞ in
terms of n and r0=R in the absence of self-diffusion has previously
been derived [39]:

pðf;n; r0Þ ¼
2

fmax

ðR�r0Þ
R2

n
nþ1 1� f

fmax

� � �1
nþ1

r0 þ ðR� r0Þ 1� f
fmax

� � n
nþ1

� �
0 < f < fmax;

r0
R

� �2
df�fmax f ¼ fmax;

8><
>:

ð8Þ

where fmax represents the maximum fluid displacement and df�fmax

is a Dirac delta function with respect to the displacement. Experi-
mentally, an outflow of spins will lead to some loss of signal, with
the amount lost proportional to the local displacement. To account
for this, the following correction is applied to pðf;n; r0Þ calculated
using Eq. (8):

p0ðf;n; r0Þ ¼ ð1� aÞpðf;n; r0Þ; ð9Þ

where p0ðf;n; r0Þ represents the experimentally acquired flow prop-
agator and a ¼ f=L, with L the length of the excitation region as
determined by the experimental set-up. Further, self-diffusion



106 T.W. Blythe et al. / Journal of Magnetic Resonance 274 (2017) 103–114
[25] is responsible for the Gaussian broadening of p0ðf; n; r0Þ such
that the expected complex signal in q-space becomes:

f ðq;n; r0Þ ¼ Sðq;n; r0Þ
jSð0Þj ¼

Z
p0ðf;n; r0Þei2pqf�4p2DðD�d

3Þq2df; ð10Þ

where D is the diffusion coefficient and D the observation time.
Fig. 3 shows (a) p0ðfÞ and (b) the real component of f ðqÞ, Reðf ðqÞÞ,
for the three example fluids considered in Fig. 1. It is observed in
Fig. 3(a) that a reduction in n and an increase in r0=R, i.e. increase
in s0=sw, causes a reduction in fmax and an increase in the maximum
probability. As shown in Fig. 3(b), the reduction in n and increase in
r0=R shown in Fig. 3(a) cause a reduction in the frequency of oscil-
lations in f ðqÞ and an increase in jf ðqÞj at the limits of q-space sam-
pled. It is also interesting to note that, as follows from simple
Fourier theory, the size of the plug flow region can be obtained from
the magnitude of the signal at high-q if the diffusion coefficient is
known, and its displacement can be obtained from the frequency
of the oscillations in q-space. The expected signal is plotted across
a q-space range of ±2000 m�1, with this corresponding to the opti-

mum sampling range, determined to be ±4hfi�1 m�1, where hfi is
the mean fluid displacement. The minimum number of q-space data
points required to be sampled across this range is investigated in
Section 3.1.

The simulation of p0ðf;n; r0Þ and thus f ðq; n; r0Þ requires knowl-
edge of fmax which can only be determined if hfi is known. When a
comparison between SðqÞ and f ðq;n; r0Þ is required, accurate esti-
mation of hfi is achieved through measurement of the evolution
of the phase of SðqÞ at low values of q, where the measured phase
shift is directly proportional to hfi. The integration of Eq. (4) with
respect to the cross-sectional area of the pipe, and between the
limits of 0 and R, gives the following expression:

hfi ¼ fmax
nþ 1
3nþ 1

þ 2r0nðnþ 1Þ
Rð2nþ 1Þð3nþ 1Þ þ

2n2r20
R2ð2nþ 1Þð3nþ 1Þ

 !
;

ð11Þ
which can be used to calculate fmax for a particular n and r0=R. Flow
propagators generated using Eqs. (8), (9) and (11) can therefore be
used together with Eq. (10) to generate f ðq; n; r0Þ for any combina-
tion of n and r0=R. A 3D dictionary of f is constructed for all required
n, r0=R, and q, with the posterior probability of a particular n and
r0=R obtained from a set of experimental measurements of SðqÞ by
calculating the probability of each measurement using Eq. (7). The
product of the individual probabilities gives the posterior probabil-
ity of a particular n and r0=R, as described by:
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Fig. 3. (a) Flow propagators and (b) the corresponding real component of the expected si
( ) n = 1.0 and r0=R = 0.0, ( ) n = 0.5 and r0=R = 0.5, and ( ) n = 0.5 and r0=R = 0.8. The
an outflow of spins. The flow propagators have been scaled to the power of the fifth roo
p n; r0jŷð Þ ¼
YN
i¼1

1
r
ffiffiffiffiffiffiffi
2p

p e�
ðjSðqi Þ�f ðqi ;n;r0 ÞjÞ2

2r2 ; ð12Þ

where N is the number of sampled q-space data points. This is
repeated for all combinations of n and r0=R to quantify the full 2D
posterior probability distribution, pðhjŷÞ, where ŷ ¼ SðqÞ and
h ¼ fn; r0g. The generation of pðhjŷÞ is summarised in Fig. 4. A sum-
mation of pðhjŷÞ along the r0 and n axes may then be used to char-
acterise pðnjŷÞ and pðr0jŷÞ, respectively, with estimates of n and r0=R
given by the mean of these distributions and the standard deviation
a measure of the uncertainty.

A corresponding measurement of dP=dL can then be used to
estimate s0, according to Eqs. (2) and (3) where s0 ¼ r0dP=ð2dLÞ,
with an estimate of k given by [40]:

dP
dL

¼ 2k
R

hfi
DR

� �n 3nþ 1
n

� �n 1
1� X

1

1� aX � bX2 � cX3

� �n

; ð13Þ

where

X ¼ r0
R
; ð14Þ
a ¼ 1
ð2nþ 1Þ ; ð15Þ
b ¼ 2n
ðnþ 1Þð2nþ 1Þ ; ð16Þ
c ¼ 2n2

ðnþ 1Þð2nþ 1Þ : ð17Þ

Alternatively, a full 3D posterior probability distribution may be
quantified using Eqs. (13)–(17), with a corresponding measurement
of dP=dL (or distribution thereof) and pðhjŷÞ, to estimate k for all
combinations of n and s0. Complete rheological characterisation is
therefore possible using the proposed Bayesian NMR approach, thus
enabling the measurement of the flow curve over a range of shear
rates in only a single measurement. Furthermore, the Bayesian
NMR approach is applicable to single-axis gradient hardware and
eliminates the need for Fourier transform, offering advantages over
alternative techniques for the estimation of rheological parameters.
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Fig. 4. A schematic to show the proposed Bayesian NMR approach: (a) p0ðfÞ is simulated for a particular combination of n and r0=R using Eqs. (8), (9) and (11); (b) Eq. (10) is
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distribution. The data shown here were simulated with hfi = 2 mm in the absence of self-diffusion and an outflow of spins. A ground truth of n = 0.5 and r0=R = 0.5 was
selected with SNR of 20 and 128 sampled q-space data points.
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3. Materials and methods

3.1. Simulations

The sensitivity of the proposed Bayesian analysis approach to
relevant experimental variables was investigated using numerical
simulation experiments. All simulations were performed in
MATLAB 2012b, operating under Windows 7. A modified version
of Eq. (10) was used for the simulation of complex Sðq;n; r0Þ data:
Sðq;n; r0Þ
jSð0Þj ¼

Z
p0ðf;n; r0Þei2pqf�4p2DðD�d

3Þq2dfþ eðqÞ; ð18Þ
where eðqÞ represents the addition of pseudo-random Gaussian
noise in quadrature, with zero mean and standard deviation r.
Using this approach, simulated Sðq;n; r0Þ data were generated with
the following parameters:
� The flow behaviour index was increased linearly between 0.1
and 1.0 in 10 steps.

� The radial position r0=R, corresponding to s0=sw, was incre-
mented linearly in 10 steps between 0.0 and 0.9, with R equal
to 7 mm, consistent with that used experimentally.

� q-space was sampled linearly between ±qmax, defined by the
gradient timings and magnitude but approximately equal to

±4hfi�1 m�1, using 2A points, with A taking integer values
between 1 and 10 to sample 2–1024 points.

� Noise was incremented linearly between 0% and 10% in 11
steps, corresponding to SNR in the range 10–1.

Note that, in all cases, SNR is defined as the ratio of the signal
intensity at the centre of q-space to the standard deviation of the
noise. The mean fluid displacement was 2 mm corresponding to
an optimum q-space range of ±2000 m�1, as detailed in Section 2.

For Bayesian analysis of the simulated Sðq; n; r0Þ data, and also
that acquired experimentally, a simple uninformative prior (pðhÞ
in Eq. (6)) was used such that the probability of each of the param-
eter values considered was assumed to be identical. In particular,
the range of priors comprised of a set of 501 values evenly spaced
between 0 and 1 for both n and r0=R, corresponding to a resolution
of 0.002. Using the method outlined in Section 2, f ðq;n; r0Þ was
simulated for all n and r0=R values and a 2D posterior probability
distribution, pðhjŷÞ, obtained; the means extracted from pðhjŷÞ pro-
vide an estimate of n and r0=R, with the standard deviations a mea-
sure of the uncertainty. The numerical simulation experiments
were repeated 100 times, each with pseudo-random Gaussian
noise, for all combinations of parameters identified previously.
Values reported in Section 4 correspond to the mean of the 100
means, with the standard deviation of the 100 means a measure
of the uncertainty.

3.2. Experimental

3.2.1. Materials and experimental set-up
Aqueous solutions of Carbopol 940 (B.F. Goodrich, USA) were

prepared in concentrations of 0.1 and 0.2 wt% using deionised
water (ELGA Purelab Option). Complete dissolution of Carbopol
940 was achieved by stirring for 18 h using an overhead stirrer
(Ika-Werke RW20); care was taken to prevent the entrapment of
air during the stirring process. The pH was measured (Corning
240 pH meter) and adjusted to 4.5 and 5.0 for the 0.1 and 0.2 wt%
Carbopol 940 solutions, respectively, using sodium hydroxide
(Fisher Scientific, UK); these combinations of concentration and pH
having previously been reported to demonstrate Herschel-Bulkley
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rheological behaviour [30]. Although Carbopol 940 solutions are
generally considered to exhibit little or no thixotropy [31], shear
history-dependent behaviour at a Carbopol 940 concentration of
P0.2 wt% has previously been observed [7,8].

The flow system comprised a Perspex pipe of internal diameter
(i.d.) 14 mm with a total loop volume of 1.5 L; the system was
operated in a closed loop configuration. A peristaltic pump (Mas-
terFlex Console Drive) capable of delivering flow rates of up to
50 mL s�1 was used, and steady flow was ensured through cou-
pling of the pumpwith a flow pulsation dampener. Flow rates were
determined gravimetrically. The radiofrequency (r.f.) coil was situ-
ated 1.5 m downstream of the pipe inlet, exceeding an inlet length
of 60 times pipe i.d. which is recommended to ensure developed
flow [41]. Pressure drop was measured across a length of 1.6 m
using a differential pressure gauge (Digitron 2002P). For the
0.1 wt% Carbopol 940 solution, a pressure drop of 827 ± 41 Pa m�1

was measured at a flow rate of 16.3 ± 0.8 mL s�1, where the uncer-
tainty represents the standard deviation of five repeated measure-
ments. A pressure drop of 3190 ± 190 Pa m�1 was measured for the
0.2 wt% Carbopol 940 solution at a flow rate of 3.00 ± 0.07 mL s�1.
These operating parameters correspond to a shear rate range of
over two orders of magnitude; 0.1–63 and 0.1–22 s�1 for the 0.1
and 0.2 wt% Carbopol 940 solutions, respectively, as determined
from MR flow imaging.
3.2.2. Magnetic resonance
All experiments were performed on a Bruker AV85 spectrome-

ter operating with a 2 T horizontal-bore superconducting magnet.
The magnet was fitted with a 60 mm i.d. birdcage r.f. coil tuned
to a frequency of 85.2 MHz for the 1H resonance. A three-axis gra-
dient system with a maximum gradient strength of 10.7 G cm�1

was used for spatial and flow encoding.
A 13-interval alternating pulsed field gradient stimulated echo

(APGSTE) pulse sequence was used, as shown in Fig. 5, to sample

q-space data in the range of ±4hfi�1 m�1 required for Bayesian
analysis. Flow encoding gradients were applied with a duration
(d) and observation time (D) of 2 and 40 ms, respectively. The max-
imum gradient strength was 1.3 and 9.0 G cm�1 for the 0.1 and
0.2 wt% Carbopol 940 solutions, respectively, to sample q-space
ranges of up to ±1080 and ±7660 m�1. In both cases, q-space was
sampled linearly in 128 steps (N). A total of 4 signal averages were
acquired with a recycle time (TR) of 1.7 s, equal to 5 times T1

(340 ms), giving a total data acquisition time of 15 min. This is
equivalent to 7 s per data point acquired. Flow rates quantified
through measurement of the evolution of the phase at low values
of q, as described in Section 2, were 15.8 ± 0.5 and
3.16 ± 0.09 mL s�1 for the 0.1 and 0.2 wt% Carbopol 940 solutions,
90° 90° 90°180° 180°

r.f.
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tstore

time
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Fig. 5. Schematic of the 13-interval APGSTE sequence used for the acquisition of the
volume-averaged flow propagator and data for Bayesian analysis.
respectively, in agreement with the gravimetric measurements to
within the experimental uncertainty.

Volume-averaged flow propagators were also acquired to
demonstrate the changes in flow distribution at the two Carbopol
940 concentrations studied using the same APSGTE pulse sequence
that was used for the Bayesian NMR but with a different range of q-
space data points. Flow encoding gradient timings and magnitudes
were concentration specific. For the 0.1 wt% Carbopol 940 solution,
d = 3 ms and D = 60 ms with a maximum gradient strength of
2.3 G cm�1 to provide a FOF of 4hfimm, corresponding to a
q-space range of up to ±2870 m�1. For the 0.2 wt% Carbopol 940
solution, flow encoding gradients were applied with d = 2 ms and
a maximum gradient strength of 9.5 G cm�1, with D = 100 ms. This
corresponds to a q-space range of up to ±8090 m�1. In both cases,
N = 128 steps. A total of 4 signal averages were acquired with
TR = 1.7 s, giving a total acquisition time of approximately 15 min.

In addition, spatially resolved velocity images were acquired for
each Carbopol 940 solution investigated using a slice selective
spin-echo MR flow imaging sequence [16], with a slice thickness
of 10 mm. A field-of-view of 18 mm was selected in both the read
and phase directions, with 128 phase increments and 128 read
points, to give a resolution of 141 lm � 141 lm. Data were
acquired such that the SNR within each liquid-filled voxel was
100. Flow encoding gradients were applied with d = 2 ms and
D = 10 ms, and d = 2 ms and D = 40 ms, for the 0.1 and 0.2 wt% Car-
bopol 940 solutions, respectively. Two increments in g were uti-
lised with the strength calibrated for each concentration to
ensure a maximum phase shift of 2p. Images were acquired in
8 min with a recycle time of 450 ms and 4 signal averages. A
non-linear least squares (NLLS) regression of the velocity (or dis-
placement) image data to Eq. (4) was used to estimate rheological
parameters n and r0, with the 95% confidence interval in the indi-
vidual fit a measure of uncertainty and the corresponding pressure
drop data providing s0 and k. All NMR experiments were per-
formed at 19.0 ± 0.5 �C. Flow rates calculated from the 2D velocity
images were 15.8 ± 0.8 and 2.92 ± 0.15 mL s�1 for the 0.1 and
0.2 wt% Carbopol 940 solutions, respectively, in agreement with
those obtained from the gravimetric measurements and low q-
space analysis to within the experimental uncertainty.
3.2.3. Conventional rheometry
Benchtop measurements of the rheological properties of each

Carbopol 940 solution investigated were performed using a Bohlin
Instruments CVO-120 HR rheometer equipped with a Peltier plate
to control the temperature to 19.0 ± 1.0 �C. The rheometer was
operated in controlled-stress mode. In this mode of operation,
the yield stress is obtained without the need for extrapolation, as
is required when operating in controlled-rate mode [42]. A
smooth-walled, 40 mm diameter parallel plate geometry was used
with a plate separation of 0.75 mm; apparent shear rate was mea-
sured across a shear stress sweep of 0.01–100 Pa in 4 min. A cor-
rection is required to be applied to the apparent flow curve to
obtain the true flow curve [42], given by:

sa ¼ 4
3
s0 þ 4

3þ n

� �
k _cna ; ð19Þ

for the case of a parallel plate rheometer, where sa and _ca represent
the apparent (measured) shear stress and shear rate, respectively.
The NLLS regression of Eq. (19) to the apparent flow curve, across
the same shear rate ranges as probed in the Bayesian NMR and
MR flow imaging experiments, was used to provide estimates of
the rheological parameters. This regression is shown in Fig. 6 for
the 0.1 and 0.2 wt% Carbopol 940 solutions, with the regression data
within the scatter of the experimental data, confirming Herschel-
Bulkley rheological behaviour over the shear rate ranges of the
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Fig. 6. Apparent shear rate-shear stress data for the (�) 0.1 and ( ) 0.2 wt%
Carbopol 940 solutions obtained using conventional rheometry. The symbols show
the experimentally acquired data and the solid lines show the regression data.
Regression was performed over the shear rate range of the NMR experiments using
Eq. (19).
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Fig. 7. A 2D posterior probability distribution, plotted on a log scale, showing the
probability of n and r0=R given the experimental observations ŷ obtained using
simulated data. The data were generated with 128 sampled q-space data points and
SNR of 100 for a ground truth of n = 0.5 and r0=R = 0.5.
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NMR experiments. The rheological parameters obtained across the
range of shear rates investigated are summarised in Table 1, where
the uncertainty represents the 95% confidence interval in the indi-
vidual fit. An increase in concentration of Carbopol 940 from 0.1
to 0.2 wt% (and an increase in pH from 4.5 to 5.0) is responsible
for a reduction in n, from 0.60 ± 0.02 to 0.28 ± 0.01. There is also
an increase in both s0 and k, from 0.31 ± 0.01 to 3.3 ± 0.1 Pa and
0.22 ± 0.01 to 4.8 ± 0.1 Pa sn, respectively, with these trends in
agreement with literature values [30]. There was no evidence of
wall slip in the data obtained.
4. Results and discussion

4.1. Numerical simulations: sensitivity to the Herschel-Bulkley
parameters

The results of the numerical simulations described in Section 3.1
are now presented and discussed. A full 2D posterior probability
distribution, pðhjŷÞ, generated using simulated data with SNR of
100 and 128 sampled q-space data points is shown in Fig. 7. From
pðhjŷÞ, estimates of n = 0.51 ± 0.02 and r0=R = 0.50 ± 0.02 were
obtained, where the uncertainties represent the standard deviation
of n and r0=R, accurate to within <2% of the ground truth of n = 0.50
and r0=R = 0.50. With reference to Fig. 4(e), an increase in noise is
observed to cause a broadening of the posterior distribution and
a decrease in maximum probability. The sensitivity to noise is
investigated in Section 4.2.

Considering only the data corresponding to 16 sampled q-space
data points with SNR of 100, we can investigate the sensitivity of
the accuracy of the proposed Bayesian NMR approach to the
Table 1
Comparison of the rheological parameters of the 0.1 and 0.2 wt% Carbopol 940 solutions o
The parameters were evaluated across shear rate ranges of 0.1–63 and 0.1–22 s�1 for the

Concentration [wt%] Method

0.1 Conventional rheometry
MR flow imaging
Bayesian NMR

0.2 Conventional rheometry
MR flow imaging
Bayesian NMR
estimation of the Herschel-Bulkley parameters. Fig. 8(a) shows
the estimate of n, given by the mean of the 100 repeat simulation
experiments, compared with the ground truth for three values of
r0=R. The accuracy of the estimate of n increases with an increase
in r0=R, however, the mean error in n remains <2% with a mean
uncertainty (defined as the standard deviation of the 100 repeat
simulation experiments) of 7%. Corresponding data for r0=R for
the three values of n reported in Fig. 8(b) show that the accuracy
of the estimate of r0=R is independent of the ground truth. Across
the range of rheological parameters investigated, the mean error
in r0=R was <2% and the mean uncertainty was <7%. These results
imply that the accuracy of the proposed Bayesian NMR approach
is largely insensitive to changes in the rheological behaviour of
the fluid under study, and therefore ideally suited to fluids demon-
strating Herschel-Bulkley, power-law, and Newtonian rheology.
Furthermore, only 16 points are required to be sampled in q-
space with SNR of 100 if an accuracy of within 2% of the ground
truth is acceptable for n and r0=R, with an uncertainty of 7%.
4.2. Numerical simulations: sensitivity to noise and reduced sampling

As a technique, Bayesian analysis has previously demonstrated
an excellent robustness to noisy data [32,37] and sparse sampling
[33]. Here, this robustness was investigated for noise levels of up to
10%, corresponding to SNR of P10, with as few as 2 sampled
q-space data points. Fig. 9 shows the relationship between the
estimate of n and the ground truth using simulated data with (a)
16 q-space data points and SNR of 1, 100, and 50, and (b) a fixed
SNR of 100 with 4, 16 and 64 q-space data points. For all cases,
r0=R = 0.5, with the estimate of n given by the mean of the 100
repeat simulation experiments.
btained using conventional rheometry, MR flow imaging and Bayesian NMR methods.
0.1 and 0.2 wt% Carbopol 940 solutions, respectively.

Rheological parameters

n s0 [Pa] k [Pa sn]

0.60 ± 0.02 0.31 ± 0.01 0.22 ± 0.01
0.55 ± 0.01 0.34 ± 0.04 0.25 ± 0.01
0.54 ± 0.01 0.32 ± 0.02 0.24 ± 0.01

0.28 ± 0.01 3.3 ± 0.1 4.8 ± 0.1
0.22 ± 0.01 3.4 ± 0.5 4.0 ± 0.1
0.30 ± 0.01 4.6 ± 0.1 2.4 ± 0.1
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Fig. 8. (a) A comparison between the input n, i.e. ground truth, and output n, i.e. estimate, using the proposed Bayesian analysis approach with SNR of 100 and 16 sampled
data points, plotted for r0=R equal to (�) 0.0, ( ) 0.2, and ( ) 0.5. (b) Corresponding data plotted for the estimate of r0=Rwith n equal to (�) 1.0, ( ) 0.8, and ( ) 0.5. Error bars
represent the standard deviation of the 100 repeat simulation experiments, i.e. the uncertainty. The diagonal line ( ) represents the expected result, i.e. input = output.
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Fig. 9. (a) A comparison between the input n, i.e. ground truth, and output n, i.e. estimate, using the proposed Bayesian analysis approach with r0=R = 0.5 and 16 sampled data
points, with SNR equal to (�) 1, ( ) 100, and ( ) 50. (b) The same comparison using data with SNR of 100 and (�) 4, ( ) 16, and ( ) 64 sampled data points. Error bars
represent the standard deviation of the 100 repeat simulation experiments, i.e. the uncertainty. The diagonal line ( ) represents the expected result, i.e. input = output.
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Fig. 9(a) shows that the accuracy of the estimation of n utilising
16 sampled q-space data points is insensitive to a reduction in SNR
from 1 to 50, with all results accurate to within <2% of the ground
truth and absent of systematic error. As expected, the mean uncer-
tainty associated with the estimation of n increases with a reduc-
tion in SNR, from 0% at an SNR of 1 up to 9% at an SNR of 50.
Despite the reduction in SNR, the accuracy of the estimation of n
remains comparable to that of conventional rheometry techniques
[9], suggesting that the proposed Bayesian NMR approach is robust
to noisy data. If we now consider the number of sampled q-space
data points, for a fixed SNR of 100, we observe in Fig. 9(b) that
the accuracy of the estimation of n is increased as the number of
sampled q-space data points is increased. For example, an increase
in the number of sampled q-space data points from 4 to 64, repre-
senting a sixteen-fold increase in the experimental acquisition
time, leads to a reduction in the mean error from 2% to <1%. The
mean uncertainty across the same range decreases from 10% to
<3%. Similar trends were observed for the estimation of r0=R.

In summary, the proposed Bayesian NMR approach has demon-
strated an excellent robustness to noisy data and reduced sam-
pling. For an SNR of 100, only 16 q-space data points need to be
sampled for accurate estimation of the rheological parameters.
For cases where SNR > 100, this can be reduced further.
4.3. Experimental validation using NMR

4.3.1. Bayesian analysis
For validation of the results of the numerical simulations, Baye-

sian NMR experiments were performed on Carbopol 940 solutions
demonstrating Herschel-Bulkley rheological behaviour. Fig. 10
shows the (a) real component and (b) imaginary component of
the signal sampled at 128 points in q-space for the 0.1 and
0.2 wt% Carbopol 940 solutions. An increase in Carbopol 940 con-
centration from 0.1 to 0.2 wt% is observed to cause an increase in
the magnitude of the signal at the limits of q-space sampled and
a decrease in the frequency of the oscillations in q-space.

For completeness, we note that the changes observed in Fig. 10
are consistent with the volume-averaged flow propagators shown
in Fig. 11, in which it is seen that an increase in concentration of
Carbopol 940 is associated with a reduction in the maximum fluid
displacement and an increase in the maximum probability (due to
an increase in r0=R). All flow propagators demonstrate a broaden-
ing due to self-diffusion and an absence of wall slip.

Methods outlined in Section 2 were used to obtain a 2D poste-
rior probability distribution, pðhjŷÞ, for each Carbopol 940 solution
investigated, with the means and standard deviations of the
distributions providing an estimate of n and s0 since dP=dL was
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Fig. 10. Experimental results showing the evolution of the normalised (a) real and (b) imaginary components of the experimentally acquired SðqÞ, plotted across a q-space
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Carbopol 940 solutions. Displacement is represented as a fraction of mean fluid
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measured. The value of k was estimated using Eqs. (13)–(17) to
enable recovery of the flow curve. Generated 2D posterior proba-
bility distributions for the 0.1 and 0.2 wt% Carbopol 940 solutions
are shown in Fig. 12. For the 0.1 wt% Carbopol 940 solution, anal-
ysis of the posterior probability distribution provided n and s0 val-
ues of 0.54 ± 0.01 and 0.32 ± 0.02 Pa, respectively, with the
uncertainties reported equal to the standard deviation of the distri-
butions, and k estimated to equal 0.24 ± 0.01 Pa sn. Rheological
n
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Fig. 12. 2D posterior probability distributions, plotted on a log scale, showing the proba
SNR (at q = 0 m�1) is >1000, with the 128 points in q-space sampled using the experime
parameters obtained for the 0.2 wt% Carbopol 940 solution using
this approach are 0.30 ± 0.01, 4.6 ± 0.1 Pa, and 2.4 ± 0.1 Pa sn for
n, s0, and k, respectively.

The robustness to reduced sampling was investigated by the
successive elimination of q-space data points between the maxi-
mum range of q-space sampled, with n and s0 values determined
for each case. Fig. 13 shows the variation in the experimentally
determined (a) n and (b) s0 for the 0.1 and 0.2 wt% Carbopol 940
solutions as the number of sampled q-space data points is reduced.
The data show that n and s0 values obtained remain insensitive to
the number of sampled q-space data points up to undersampling in
excess of 80% (from 128 to 20 sampled q-space data points).
Although there is a noticeable increase in error at a higher level
of undersampling, Fig. 13 shows that a robust measurement of n
(with an error of <5%) can be obtained when only 2 q-space data
points are sampled, with up to 8 q-space data points required for
the accurate estimation of s0. The acquisition of 8 q-space data
points would correspond to a data acquisition time of <60 s, for
four signal averages and a recycle time of 1.7 s, representing a
reduction in acquisition time of 88% when compared with the
acquisition of an MR flow image. Although a simple linear sam-
pling scheme has been used here, it may be possible to further
reduce the number of required q-space data points by choosing
non-linear sampling schemes.

4.3.2. Comparison of Bayesian analysis with MR flow imaging and
conventional rheometry approaches

The rheological parameters estimated using each of the Baye-
sian NMR, MR flow imaging and conventional rheometry methods
n
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bility of n and s0 given ŷ for the (a) 0.1 and (b) 0.2 wt% Carbopol 940 solutions. The
ntal procedure outlined in Section 3.2.2.
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experimental data.
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are summarised in Table 1. Before comparing these data, the
results of the MR flow imaging method are presented.

Fig. 14 shows the radially-averaged 2D velocity image data
obtained from the 2D z-velocity image acquired for each Carbopol
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Fig. 15. Flow curves for the (a) 0.1 and (b) 0.2 wt% Carbopol 940 solutions obtained us
plotted across the shear rate ranges of the NMR experiments. The width of the line for t
posterior probability distributions shown in Fig. 12.
940 solution investigated. It is observed that the increase in con-
centration of Carbopol 940 from 0.1 to 0.2 wt% is responsible for
a decrease in the maximum scaled displacement and an increase
in r0=R.

The 2D NLLS regression of D�1fðrÞ was performed to the 2D
velocity image data for each Carbopol 940 solution investigated
to quantify n and r0=R, with fðrÞ given by Eq. (4). These fits to the
data are also shown in Fig. 14; the displacement profiles and
regression data are in agreement to within experimental error.
From these, s0 and k can be estimated using Eqs. (2) and (3) and
(13)–(17), respectively. For the 0.1 wt% Carbopol 940 solution, this
approach provided n and s0 values of 0.55 ± 0.01 and
0.34 ± 0.04 Pa, respectively, where the uncertainty is equal to the
95% confidence interval in the individual fit, with
k = 0.25 ± 0.01 Pa sn. Rheological parameters obtained for the
0.2 wt% Carbopol 940 solution using this approach are
0.22 ± 0.01, 3.4 ± 0.5 Pa, and 4.0 ± 0.1 Pa sn for n, s0, and k,
respectively.

Considering Table 1, we can now compare the results from the
Bayesian NMR and MR flow imaging methods with conventional
rheometry. Fig. 15 shows the corresponding flow curves for the
(a) 0.1 and (b) 0.2 wt% Carbopol 940 solutions, calculated using
Eq. (1) with the parameters reported in Table 1. From Table 1, it
is clearly seen that the values of n, s0, and k determined for the
0.1 wt% Carbopol 940 solution using the three different methods
are consistent, with the numerical values of the rheological param-
eters obtained from the two MR methods consistent to within
0.1 1 10
1

10

100

γ [s-1]

τ [
Pa

]

(b) 

.

ing ( ) conventional rheometry, ( ) MR flow imaging, and ( ) Bayesian NMR,
he Bayesian NMR results represent the 95% confidence bands obtained from the 2D
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experimental error. Furthermore, as shown in Fig. 15(a), the flow
curves obtained from the three methods are almost identical. It
is interesting to note that the 95% confidence bands shown in
Fig. 15 for the Bayesian NMR results are small despite the uncer-
tainty in the individual rheological parameters.

In contrast, with reference to Table 1, the rheological parame-
ters determined for the 0.2 wt% Carbopol 940 solution using the
three different methods show less good agreement. However,
interestingly, despite the differences in values of the rheological
parameters determined by the Bayesian NMR andMR flow imaging
methods, their respective flow curves are almost indistinguishable
from one another. This observation highlights the inability of the
Herschel-Bulkley constitutive equation to unambiguously estab-
lish the rheological parameters, since different sets of these param-
eters can provide equivalent fits to the experimental data [4]. With
reference to Fig. 15(b), it is seen that the flow curve determined
using conventional rheometry is significantly different from those
determined by the MR methods. This is most likely explained by
the shear history-dependent behaviour of the 0.2 wt% Carbopol
940 solution, with differences of up to 40% in the yield stress of
P0.2 wt% Carbopol 940 solutions previously reported [7,8], and
the different flow geometries used. Since, in a process environ-
ment, the history-dependent behaviour of a process fluid is impor-
tant, the ability of the Bayesian NMR approach to provide accurate
measurements of rheological parameters online, or inline, and with
acquisition times of <60 s is of great value.
5. Conclusions

A Bayesian NMR approach has been developed to enable the
rheological characterisation of fluids demonstrating Herschel-
Bulkley rheological behaviour in a pipe flow geometry using PFG
NMR, requiring only single-axis gradient hardware. The approach
utilises acquisition data directly, removing the need for Fourier
transform, negating strict sampling requirements and hence per-
mitting significant reductions in acquisition times.

An analytical expression describing the flow propagator in
terms of rheological parameters appropriate to the Herschel-
Bulkley constitutive equation was used, and a likelihood function
developed to predict (or model) the PFG NMR signal for given n
and r0=R. This was used to obtain a posterior probability distribu-
tion through comparison with the experimentally acquired PFG
NMR signal, enabling parameter estimation for n, with the pressure
drop being used to estimate s0 and k. Simulation experiments per-
formed indicated the proposed Bayesian NMR approach to be
robust to noisy data and reduced sampling, with only 16 points
required to be sampled in q-space at SNR of 100.

These numerical simulation studies were validated using exper-
imentally acquired Bayesian NMR datasets for 0.1 and 0.2 wt% Car-
bopol 940 solutions. It was found that the Bayesian NMR approach
provided estimates of the rheological parameters describing the
Herschel-Bulkley fluids in <60 s. The estimates of the rheological
parameters determined from Bayesian NMR were then compared
with the same values determined using MR flow imaging and con-
ventional rheometry. Whilst the rheological parameters, and hence
flow curves, provided by all three methods for the 0.1 wt% Car-
bopol 940 solution were consistent, those for the 0.2 wt% Carbopol
940 solution were not. Both MR methods gave similar rheological
characteristics but those measured from conventional rheometry
differed significantly; this is most likely due to the shear history-
dependent nature of the rheology of the 0.2 wt% Carbopol 940
solution and the different flow geometries used. The results pre-
sented therefore suggest that not only does the Bayesian NMR
approach offer the convenience of fast data acquisition but that this
may offer us new opportunities in the study and characterisation
of history-dependent behaviour. We also note that the method is
robust to relatively low signal-to-noise ratio and therefore offers
opportunities for transfer to low and intermediate magnetic field
hardware [43] for online, or inline, process monitoring.

Whilst this measurement has been demonstrated in application
to Herschel-Bulkley fluids, it is readily applied to power-law fluids
without further modification and can be easily adapted to other
rheological models.
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