7 research outputs found

    Using geophysical surveys to test tracer-based storage estimates in headwater catchments

    Get PDF
    Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).Peer reviewedPostprin

    Using geophysical surveys to test tracer-based storage estimates in headwater catchments

    Get PDF
    Hydrogeophysical surveys were carried out in a 3.2 km2 Scottish catchment where previous isotope studies inferred significant groundwater storage that makes important contributions to streamflow. We used electrical resistivity tomography (ERT) to characterize the architecture of glacial drifts and make an approximation of catchment‐scale storage. Four ERT lines (360–535 m in length) revealed extensive 5–10 m deep drift cover on steeper slopes, which extends up to 20–40 m in valley bottom areas. Assuming low clay fractions, we interpret variable resistivity as correlating with variations in porosity and water content. Using Archie's Law as a first approximation, we compute likely bounds for storage along the ERT transects. Areas of highest groundwater storage occur in valley bottom peat soils (up to 4 m deep) and underlying drift where up to 10 000 mm of precipitation equivalent may be stored. This is consistent with groundwater levels which indicate saturation to within 0.2 m of the surface. However, significant slow groundwater flow paths occur in the shallower drifts on steeper hillslopes, where point storage varies between ~1000 mm–5000 mm. These fluxes maintain saturated conditions in the valley bottom and are recharged from drift‐free areas on the catchment interfluves. The surveys indicate that catchment scale storage is >2000 mm which is consistent with tracer‐based estimates. Copyright © 2016 John Wiley & Sons, Ltd

    Baseflow dynamics : multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows

    No full text
    Acknowledgements This work is part of the Aqualink project and has been funded by the Leibniz Association: Joint Initiative for Research and Innovation (PAKT). We would like to thank the NRI staff for their help during field and laboratory work, especially Audrey Innes and Jonathan Dick. The water samples were analysed for major ions at the Marine Scotland Science, Freshwater Fisheries Laboratory, in Pitlochry. We also would like to thank Guillaume Bertrand and two anonymous reviewers for the constructive comments which helped improve this manuscript.Peer reviewedPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprintPostprin

    Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality

    No full text
    Submerged macrophytes can stabilise clear water conditions in shallow lakes. However, many existing models for deep lakes neglect their impact. Here, we tested the hypothesis that submerged macrophytes can affect the water clarity in deep lakes. A one-dimensional, vertically resolved macrophyte model was developed based on PCLake and coupled to SALMO-1D and GOTM hydrophysics and validated against field data. Validation showed good coherence in dynamic growth patterns and colonisation depths. In our simulations the presence of submerged macrophytes resulted in up to 50% less phytoplankton biomass in the shallowest simulated lake (11 m) and still 15% less phytoplankton was predicted in 100 m deep oligotrophic lakes. Nutrient loading, lake depth, and lake shape had a strong influence on macrophyte effects. Nutrient competition was found to be the strongest biological interaction. Despite a number of limitations, the derived dynamic lake model suggests significant effects of submerged macrophytes on deep lake water quality
    corecore