599 research outputs found
ENVIRONMENTAL CONTAMINATION BY SUBSTRATA OF ORE MINING DUMPS, THEIR MONITORING AS WELL AS MEASURES OF REDUCTION
The main activity fields of the research group “Applied Geoecology“ at the University of Potsdam are the development and tests of complex monitoring systems for water bodies and soils, together with the development of sustainable additives for vegetation restoration on ore mining dumps with extreme substratum parameters. The dump substrata are translocated by surface waters and by aeolian processes to the surroundings affecting soil processes. A field spectrometer has been engineered, which can detect dam substrata in soils. Moreover, various soil additives were developed, enabling the establishment of vegetation on the extreme dump substrata. For all components there have been realised extensive tests in the framework of greenhouse and field experiments under different climate conditions on three continents, on various substrata and with varying plant species. All experiments were successful, even though no additional irrigation and no mineral fertilizer were allowed to be used, in order to realise the idea of a sustainable greening
Non-english and non-latin signature verification systems: A survey
Signatures continue to be an important biometric because they remain widely used as a means of personal verification and therefore an automatic verification system is needed. Manual signature-based authentication of a large number of documents is a difficult and time consuming task. Consequently for many years, in the field of protected communication and financial applications, we have observed an explosive growth in biometric personal authentication systems that are closely connected with measurable unique physical characteristics (e.g. hand geometry, iris scan, finger prints or DNA) or behavioural features. Substantial research has been undertaken in the field of signature verification involving English signatures, but to the best of our knowledge, very few works have considered non-English signatures such as Chinese, Japanese, Arabic etc. In order to convey the state-of-the-art in the field to researchers, in this paper we present a survey of non-English and non-Latin signature verification systems
Cognitive Analysis for Reading and Writing of Bengali Conjuncts
© 2018 IEEE. In this paper, we study the difficulties arising in reading and writing of Bengali conjunct characters by human-beings. Such difficulties appear when the human cognitive system faces certain obstructions in effortlessly reading/writing. In our computer-based investigation, we consider the reading/writing difficulty analysis task as a machine learning problem supervised by human perception. To this end, we employ two distinct models: (a) an auto-derived feature-based Inception network and (b) a hand-crafted feature-based SVM (Support Vector Machine). Two commonly used Bengali printed fonts and three contemporary handwritten databases are used for collecting subjective opinion scores from human readers/writers. On this corpus, which contains the perceptive ground-truth opinion of reading/writing complications, we have undertaken to conduct the experiments. The experimental results obtained on various types of conjunct characters are promising
A study on idiosyncratic handwriting with impact on writer identification
© 2018 IEEE. In this paper, we study handwriting idiosyncrasy in terms of its structural eccentricity. In this study, our approach is to find idiosyncratic handwritten text components and model the idiosyncrasy analysis task as a machine learning problem supervised by human cognition. We employ the Inception network for this purpose. The experiments are performed on two publicly available databases and an in-house database of Bengali offline handwritten samples. On these samples, subjective opinion scores of handwriting idiosyncrasy are collected from handwriting experts. We have analyzed the handwriting idiosyncrasy on this corpus which comprises the perceptive ground-truth opinion. We also investigate the effect of idiosyncratic text on writer identification by using the SqueezeNet. The performance of our system is promising
An investigation of novel combined features for a handwritten short answer assessment system
© 2016 IEEE. This paper proposes an off-line automatic assessment system utilising novel combined feature extraction techniques. The proposed feature extraction techniques are 1) the proposed Water Reservoir, Loop, Modified Direction and Gaussian Grid Feature (WRL-MDGGF), 2) the proposed Gravity, Water Reservoir, Loop, Modified Direction and Gaussian Grid Feature (G-WRL-MDGGF). The proposed feature extraction techniques together with their original features and other combined feature extraction techniques were employed in an investigation of the efficiency of feature extraction techniques on an automatic off-line short answer assessment system. The proposed system utilised two classifiers namely, artificial neural networks and Support Vector Machines (SVMs), two type of datasets and two different thresholds in this investigation. Promising recognition rates of 94.85% and 94.88% were obtained when the proposed WRL-MDGGF and G-WRL-MDGGF were employed, respectively, using SVMs
Multiclass Support Matrix Machines by Maximizing the Inter-Class Margin for Single Trial EEG Classification
© 2001-2011 IEEE. Accurate classification of Electroencephalogram (EEG) signals plays an important role in diagnoses of different type of mental activities. One of the most important challenges, associated with classification of EEG signals is how to design an efficient classifier consisting of strong generalization capability. Aiming to improve the classification performance, in this paper, we propose a novel multiclass support matrix machine (M-SMM) from the perspective of maximizing the inter-class margins. The objective function is a combination of binary hinge loss that works on C matrices and spectral elastic net penalty as regularization term. This regularization term is a combination of Frobenius and nuclear norm, which promotes structural sparsity and shares similar sparsity patterns across multiple predictors. It also maximizes the inter-class margin that helps to deal with complex high dimensional noisy data. The extensive experiment results supported by theoretical analysis and statistical tests show the effectiveness of the M-SMM for solving the problem of classifying EEG signals associated with motor imagery in brain-computer interface applications
Recent advances in video-based human action recognition using deep learning: A review
© 2017 IEEE. Video-based human action recognition has become one of the most popular research areas in the field of computer vision and pattern recognition in recent years. It has a wide variety of applications such as surveillance, robotics, health care, video searching and human-computer interaction. There are many challenges involved in human action recognition in videos, such as cluttered backgrounds, occlusions, viewpoint variation, execution rate, and camera motion. A large number of techniques have been proposed to address the challenges over the decades. Three different types of datasets namely, single viewpoint, multiple viewpoint and RGB-depth videos, are used for research. This paper presents a review of various state-of-the-art deep learning-based techniques proposed for human action recognition on the three types of datasets. In light of the growing popularity and the recent developments in video-based human action recognition, this review imparts details of current trends and potential directions for future work to assist researchers
An empirical study on writer identification and verification from intra-variable individual handwriting
© 2013 IEEE. The handwriting of a person may vary substantially with factors, such as mood, time, space, writing speed, writing medium/tool, writing a topic, and so on. It becomes challenging to perform automated writer verification/identification on a particular set of handwritten patterns (e.g., speedy handwriting) of an individual, especially when the system is trained using a different set of writing patterns (e.g., normal speed) of that same person. However, it would be interesting to experimentally analyze if there exists any implicit characteristic of individuality which is insensitive to high intra-variable handwriting. In this paper, we study some handcrafted features and auto-derived features extracted from intra-variable writing. Here, we work on writer identification/verification from highly intra-variable offline Bengali writing. To this end, we use various models mainly based on handcrafted features with support vector machine and features auto-derived by the convolutional network. For experimentation, we have generated two handwritten databases from two different sets of 100 writers and enlarged the dataset by a data-augmentation technique. We have obtained some interesting results
Crowd Counting in Low-Resolution Crowded Scenes Using Region-Based Deep Convolutional Neural Networks
© 2013 IEEE. Crowd counting and density estimation is an important and challenging problem in the visual analysis of the crowd. Most of the existing approaches use regression on density maps for the crowd count from a single image. However, these methods cannot localize individual pedestrian and therefore cannot estimate the actual distribution of pedestrians in the environment. On the other hand, detection-based methods detect and localize pedestrians in the scene, but the performance of these methods degrades when applied in high-density situations. To overcome the limitations of pedestrian detectors, we proposed a motion-guided filter (MGF) that exploits spatial and temporal information between consecutive frames of the video to recover missed detections. Our framework is based on the deep convolution neural network (DCNN) for crowd counting in the low-to-medium density videos. We employ various state-of-the-art network architectures, namely, Visual Geometry Group (VGG16), Zeiler and Fergus (ZF), and VGGM in the framework of a region-based DCNN for detecting pedestrians. After pedestrian detection, the proposed motion guided filter is employed. We evaluate the performance of our approach on three publicly available datasets. The experimental results demonstrate the effectiveness of our approach, which significantly improves the performance of the state-of-the-art detectors
Drone detection in long-range surveillance videos
© 2019 IEEE. The usage of small drones/UAVs has significantly increased recently. Consequently, there is a rising potential of small drones being misused for illegal activities such as terrorism, smuggling of drugs, etc. posing high-security risks. Hence, tracking and surveillance of drones are essential to prevent security breaches. The similarity in the appearance of small drone and birds in complex background makes it challenging to detect drones in surveillance videos. This paper addresses the challenge of detecting small drones in surveillance videos using popular and advanced deep learning-based object detection methods. Different CNN-based architectures such as ResNet-101 and Inception with Faster-RCNN, as well as Single Shot Detector (SSD) model was used for experiments. Due to sparse data available for experiments, pre-trained models were used while training the CNNs using transfer learning. Best results were obtained from experiments using Faster-RCNN with the base architecture of ResNet-101. Experimental analysis on different CNN architectures is presented in the paper, along with the visual analysis of the test dataset
- …