3,614 research outputs found

    PAR14: ASSESSMENT OF THE RELATIONSHIP BETWEEN DISEASE SEVERITY, QUALITY OF LIFE AND WILLINGNESS TO PAY IN ASTHMA

    Get PDF

    A cultura do arroz de sequeiro no Brasil: problemas e perspectivas.

    Get PDF
    A produção brasileira de arroz esta concentrada, principalmente, nas regiões Centro-Oeste, Sudeste e Sul. Na região Nordeste destaca-se apenas o Maranhão como grande produtor. No ano agrícola de 77/78, a produção brasileira de arroz foi cerca de 7,5 milhões de toneladas, obtidas em aproximadamente 5,6 milhões de hectares, com a produtividade média de 1.340 kg por hectare. Desta produção, aproximadamente 91,2% ou 6.842.000 toneladas foram produzidas nos estados do Rio Grande do Sul, Mato Grosso do Sul, Maranhão, Mato Grosso, Minas Gerais, Goiás, Santa Catarina, São Paulo e Paraná. No Rio Grande do Sul e Santa Catarina, predomina o sistema de cultivo de arroz com irrigação por inundação, enquanto que nos Estados de Mato Grosso, Mato Grosso do Sul, Maranhão, Minas Gerais, Goiás, São Paulo e Paraná, o sistema predominante é o de sequeiro

    Outcomes of patients with advanced cancer and KRAS mutations in phase I clinical trials.

    Get PDF
    BackgroundKRAS mutation is common in human cancer. We assessed the clinical factors, including type of KRAS mutation and treatment, of patients with advanced cancer and tumor KRAS mutations and their association with treatment outcomes.MethodsPatients referred to the Phase I Clinic for treatment who underwent testing for KRAS mutations were analyzed.ResultsOf 1,781 patients, 365 (21%) had a KRAS mutation. The G12D mutation was the most common mutation (29%). PIK3CA mutations were found in 24% and 10% of patients with and without KRAS mutations (p<0.0001). Of 223 patients with a KRAS mutation who were evaluable for response, 56 were treated with a MEK inhibitor-containing therapy and 167 with other therapies. The clinical benefit (partial response and stable disease lasting ≥6 months) rates were 23% and 9%, respectively, for the MEK inhibitor versus other therapies (p=0.005). The median progression-free survival (PFS) was 3.3 and 2.2 months, respectively (p=0.09). The respective median overall survival was 8.4 and 7.0 months (p=0.38). Of 66 patients with a KRAS mutation and additional alterations, higher rates of clinical benefit (p=0.04), PFS (p=0.045), and overall survival (p=0.02) were noted in patients treated with MEK inhibitor-containing therapy (n=9) compared to those treated with targeted therapy matched to the additional alterations (n=24) or other therapy (n=33).ConclusionsMEK inhibitors in patients with KRAS-mutated advanced cancer were associated with higher clinical benefit rates compared to other therapies. Therapeutic strategies that include MEK inhibitors or novel agents combined with other targeted therapies or chemotherapy need further investigation

    Electromagnetic Compatibility of a Low Voltage Power Supply for the ATLAS Tile Calorimeter Front-End Electronics

    Get PDF
    The front-end electronics of the ATLAS Tile Calorimeter is powered by DC/DC converters that sit close to it. The performance of the detector electronics is constrained by the conducted noise emissions of its power supply. A compatibility limit is defined for the system. The noise susceptibility of the front-end electronics is evaluated, and different solutions to reduce the front-end electronics noise are discussed and tested

    The intrinsically disordered Tarp protein from chlamydia binds actin with a partially preformed helix

    Get PDF
    Tarp (translocated actin recruiting phosphoprotein) is an effector protein common to all chlamydial species that functions to remodel the host-actin cytoskeleton during the initial stage of infection. In C. trachomatis, direct binding to actin monomers has been broadly mapped to a 100-residue region (726-825) which is predicted to be predominantly disordered, with the exception of a ~10-residue α helical patch homologous to other WH2 actin-binding motifs. Biophysical investigations demonstrate that a Tarp726-825 construct behaves as a typical intrinsically disordered protein; within it, NMR relaxation measurements and chemical shift analysis identify the ten residue WH2-homologous region to exhibit partial α-helix formation. Isothermal titration calorimetry experiments on the same construct in the presence of monomeric G-actin show a well defined binding event with a 1:1 stoichiometry and Kd of 102 nM, whilst synchrotron radiation circular dichroism spectroscopy suggests the binding is concomitant with an increase in helical secondary structure. Furthermore, NMR experiments in the presence of G-actin indicate this interaction affects the proposed WH2-like α-helical region, supporting results from in silico docking calculations which suggest that, when folded, this α helix binds within the actin hydrophobic cleft as seen for other actin-associated proteins

    A mobile data acquisition system

    Get PDF
    A mobile data aquisition (MobiDAQ) was developed for the ATLAS central hadronic calorimeter (TileCal). MobiDAQ has been designed in order to test the functionalities of the TileCal front-end electronics and to acquire calibration data before the final back-end electronics were built and tested. MobiDAQ was also used to record the first cosmic ray events acquired by an ATLAS subdetector in the underground experimental area

    Divergent Pro- and Antiinflammatory Roles for IL-23 and IL-12 in Joint Autoimmune Inflammation

    Get PDF
    Interleukin (IL) 23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 affects memory T cell and inflammatory macrophage function through engagement of a novel receptor (IL-23R) on these cells. Recent analysis of the contribution of IL-12 and IL-23 to central nervous system autoimmune inflammation demonstrated that IL-23 rather than IL-12 was the essential cytokine. Using gene-targeted mice lacking only IL-12 (p35−/−) or IL-23 (p19−/−), we show that the specific absence of IL-23 is protective, whereas loss of IL-12 exacerbates collagen-induced arthritis. IL-23 gene-targeted mice did not develop clinical signs of disease and were completely resistant to the development of joint and bone pathology. Resistance correlated with an absence of IL-17–producing CD4+ T cells despite normal induction of collagen-specific, interferon-γ–producing T helper 1 cells. In contrast, IL-12–deficient p35−/− mice developed more IL-17–producing CD4+ T cells, as well as elevated mRNA expression of proinflammatory tumor necrosis factor, IL-1β, IL-6, and IL-17 in affected tissues of diseased mice. The data presented here indicate that IL-23 is an essential promoter of end-stage joint autoimmune inflammation, whereas IL-12 paradoxically mediates protection from autoimmune inflammation

    Payload capabilities and operational limits of eversion robots

    Get PDF
    Recent progress in soft robotics has seen new types of actuation mechanisms based on apical extension which allows robots to grow to unprecedented lengths. Eversion robots are a type of robots based on the principle of apical extension offering excellent maneuverability and ease of control allowing users to conduct tasks from a distance. Mechanical modelling of these robotic structures is very important for understanding their operational capabilities. In this paper, we model the eversion robot as a thin-walled cylindrical beam inflated with air pressure, using Timoshenko beam theory considering rotational and shear effects. We examine the various failure modes of the eversion robots such as yielding, buckling instability and lateral collapse, and study the payloads and operational limits of these robots in axial and lateral loading conditions. Surface maps showing the operational boundaries for different combinations of the geometrical parameters are presented. This work provides insights into the design of eversion robots and can pave the way towards eversion robots with high payload capabilities that can act from long distances

    Kinematic Control and Obstacle Avoidance for Soft Inflatable Manipulator

    Get PDF
    © Springer Nature Switzerland AG 2019. In this paper, we present a kinematic control and obstacle avoidance for the soft inflatable manipulator which combines pressure and tendons as an actuating mechanism. The position control and obstacle avoidance took inspiration from the phenomena of a magnetic field in nature. The redundancy in the manipulator combined with a planar mobile base is exploited to help the actuators stay under their maximum capability. The navigation algorithm is shown to outperform the potential-field-based navigation in its ability to smoothly and reactively avoid obstacles and reach the goal in simulation scenarios
    corecore