865 research outputs found

    STORY: A hierarchical animation and storyboarding system for alpha-1

    Get PDF
    Journal ArticleWe introduce an integrated animation and storyboarding system that simplifies the creation and refinement of computer generated animations. The framework models both the process and product of an animated sequence, making animation more accessible for communication and as an art form. The system adopts a novel approach to animation by integrating storyboards and the traditional film hierarchy in a computer animation system. Traditional animation begins with storyboards representing important moments in a film. These storyboards are structured into shots and scenes which form a standard hierarchy. This hierarchy is important to long animations because it reduces the complexity to manageable proportions. We also introduce the animation proof reader, a tool for identifying awkward camera placement and motion sequences using traditional film production rules

    Exploring Correlation Methods to Determine QCD beta-Functions on the Lattice

    Full text link
    We investigate -- as an alternative to usual Monte Carlo Renormalization Group methods -- the feasibility of extracting QCD beta-functions directly from a lattice analysis of correlations between the action and Wilson loops. We test this correlation technique numerically in four dimensional SU(2) gauge theory, on a 16^4 lattice at beta = 2.5 and find very promising results.Comment: 12 pages, 2 Figure

    Implementation of higher-order absorbing boundary conditions for the Einstein equations

    Full text link
    We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition B_L of order L=l yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions B_L with L<l, which include the widely used freezing-Psi_0 boundary condition that imposes the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in Class. Quantum Grav

    Short-term leprosy forecasting from an expert opinion survey.

    Get PDF
    We conducted an expert survey of leprosy (Hansen's Disease) and neglected tropical disease experts in February 2016. Experts were asked to forecast the next year of reported cases for the world, for the top three countries, and for selected states and territories of India. A total of 103 respondents answered at least one forecasting question. We elicited lower and upper confidence bounds. Comparing these results to regression and exponential smoothing, we found no evidence that any forecasting method outperformed the others. We found evidence that experts who believed it was more likely to achieve global interruption of transmission goals and disability reduction goals had higher error scores for India and Indonesia, but lower for Brazil. Even for a disease whose epidemiology changes on a slow time scale, forecasting exercises such as we conducted are simple and practical. We believe they can be used on a routine basis in public health

    Cold-Formed Steel Strength Predictions for Torsion

    Get PDF
    Locally slender open cross-section members are susceptible to significant twisting and high warping torsion stresses. Torsion considerations are complicated by whether it is derived as a first-order effect from loading or a second-order effect from instability. Previous direct torsion experiments on lipped channels have shown significant inelastic reserve in limited cases. The current design for combined bending and torsion interaction has some limitations, including only considering the first yield in torsion and ignoring the cross-section slenderness in torsion. A parametric study is conducted to predict the torsion capacity in locally slender cross-sections. Shell finite element models of lipped Cee and Zee section members are validated with existing experiments on combined bending and torsion. The validated models are utilized for a parametric study with applied torsion on a range of cross-sections, steel grades, and members lengths to cover the range of practically expected torsional slenderness. A set of bimoment parameters, including yield bimoment, buckling bimoment, and plastic bimoment, are calculated and the ultimate bimoment is determined by performing shell finite element collapse analyses. A simple uniform equation is adopted to predict the bimoment capacity and two bimoment strength curves under torsion only are proposed for local and distortional buckling controlled cases respectively

    Dynamics of lymphatic regeneration and flow patterns after lymph node dissection.

    Get PDF
    Knowledge about the mechanisms of regeneration of the lymphatic vasculature after surgical trauma is essential for the development of strategies for the prevention and therapy of lymphedema. However, little is known about the alterations of lymphatic flow directly after surgical trauma. We investigated lymphatic function in mice using near-infrared imaging for a period of 4 weeks after surgeries that mimic sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND), by removal of the popliteal lymph node (LN) alone or together with the popliteal fat pad, respectively. SLNB-like surgery did not cause changes in lymphatic drainage in the majority of cases. In contrast, lymphatic drainage impairment shown by collecting vessel rupture, dermal backflow and rerouting of lymph flow via collateral vessels were observed after ALND-like surgery. All collateral vessels drained to the inguinal LN. These results indicate that less invasive surgery prevents lymphatic decompensation. They also reveal the development and maturation of collateral lymphatic vessels after extensive surgical trauma, which reroute the flow of lymph towards a different LN. These findings might be helpful for the development of strategies to prevent and/or treat post-surgical lymphedema

    A century-long record of plant evolution reconstructed from a coastal marsh seed bank

    Get PDF
    Evidence is mounting that climate-driven shifts in environmental conditions can elicit organismal evolution, yet there are sparingly few long-term records that document the tempo and progression of responses, particularly for plants capable of transforming ecosystems. In this study, we “resurrected” cohorts of a foundational coastal marsh sedge (Schoenoplectus americanus) from a time-stratified seed bank to reconstruct a century-long record of heritable variation in response to salinity exposure. Common-garden experiments revealed that S. americanus exhibits heritable variation in phenotypic traits and biomass-based measures of salinity tolerance. We found that responses to salinity exposure differed among the revived cohorts, with plants from the early 20th century exhibiting greater salinity tolerance than those from the mid to late 20th century. Fluctuations in salinity tolerance could reflect stochastic variation but a congruent record of genotypic variation points to the alternative possibility that the loss and gain in functionality are driven by selection, with comparisons to historical rainfall and paleosalinity records suggesting that selective pressures vary according to shifting estuarine conditions. Because salinity tolerance in S. americanus is tightly coupled to primary productivity and other vital ecosystem attributes, these findings indicate that organismal evolution merits further consideration as a factor shaping coastal marsh responses to climate change

    I-Brane Inflow and Anomalous Couplings on D-Branes

    Get PDF
    We show that the anomalous couplings of DD-brane gauge and gravitational fields to Ramond-Ramond tensor potentials can be deduced by a simple anomaly inflow argument applied to intersecting DD-branes and use this to determine the eight-form gravitational coupling.Comment: 8 pages, harvmac, no figure

    An Exhumed Late Paleozoic Canyon in the Rocky Mountains

    Get PDF
    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite‐flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator

    Transfinite mean value interpolation in general dimension

    Get PDF
    AbstractMean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension
    corecore