13,716 research outputs found
A Measure of Space for Computing over the Reals
We propose a new complexity measure of space for the BSS model of
computation. We define LOGSPACE\_W and PSPACE\_W complexity classes over the
reals. We prove that LOGSPACE\_W is included in NC^2\_R and in P\_W, i.e. is
small enough for being relevant. We prove that the Real Circuit Decision
Problem is P\_R-complete under LOGSPACE\_W reductions, i.e. that LOGSPACE\_W is
large enough for containing natural algorithms. We also prove that PSPACE\_W is
included in PAR\_R
Golden Ratio Prediction for Solar Neutrino Mixing
It has recently been speculated that the solar neutrino mixing angle is
connected to the golden ratio phi. Two such proposals have been made, cot
theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and
discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group
D_{10}. This symmetry is a natural candidate because the angle in the
expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the
exterior angle of a decagon and D_{10} is its rotational symmetry group. We
also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio
Field Theoretical Approach to Electrochemical Deposition
In this work we present an application of the lambda-phi^4 field theoretical
model to the adsorption of atoms and molecules on metallic surfaces - the
electrochemical deposition. The usual approach to this system consists in the
computational simulation using Monte Carlo techniques of an effective
lattice-gas Hamiltonian. We construct an effective model towards a comparison
between the lattice-gas Hamiltonian and the discrete version of the
lambda-phi^4 Hamiltonian, obtaining the relationships between the model
parameters and electrochemical quantities. The lambda-phi^4 model is studied in
the mean field approximation, and the results are fitted and compared to
numerical simulated and experimental data.Comment: 9 pages, 5 figure
Microwave Scattering and Noise Emission from Afterglow Plasmas in a Magnetic Field
The microwave reflection and noise emission (extraordinary mode) from cylindrical rare‐gas (He, Ne, Ar) afterglow plasmas in an axial magnetic field is described. Reflection and noise emission are measured as a function of magnetic field near electron cyclotron resonance (ω ≈ ω_c) with electron density as a parameter (ω_p < ω). A broad peak, which shifts to lower values of ω_c/ω) as electron density increases, is observed for (ω_c/ω) ≤ 1. For all values of electron density a second sharp peak is found very close to cyclotron resonance in reflection measurements. This peak does not occur in the emission data. Calculations of reflection and emission using a theoretical model consisting of a one‐dimensional, cold plasma slab with nonuniform electron density yield results in qualitative agreement with the observations. Both the experimental and theoretical results suggest that the broad, density‐dependent peak involves resonance effects at the upper hybrid frequency ((ω_h)^2 = (ω_c)^2 + (ω_p)^2) of the plasma
Scaling in Complex Systems: Analytical Theory of Charged Pores
In this paper we find an analytical solution of the equilibrium ion
distribution for a toroidal model of a ionic channel, using the Perfect
Screening Theorem (PST). The ions are charged hard spheres, and are treated
using a variational Mean Spherical Approximation (VMSA) .
Understanding ion channels is still a very open problem, because of the many
exquisite tuning details of real life channels. It is clear that the electric
field plays a major role in the channel behaviour, and for that reason there
has been a lot of work on simple models that are able to provide workable
theories. Recently a number of interesting papers have appeared that discuss
models in which the effect of the geometry, excluded volume and non-linear
behaviour is considered.
We present here a 3D model of ionic channels which consists of a charged,
deformable torus with a circular or elliptical cross section, which can be flat
or vertical (close to a cylinder). Extensive comparisons to MC simulations were
performed.
The new solution opens new possibilities, such as studying flexible pores,
and water phase transformations inside the pores using an approach similar to
that used on flat crystal surfaces
Berry-phase blockade in single-molecule magnets
We formulate the problem of electron transport through a single-molecule
magnet (SMM) in the Coulomb blockade regime taking into account topological
interference effects for the tunneling of the large spin of a SMM. The
interference originates from spin Berry phases associated with different
tunneling paths. We show that in the case of incoherent spin states it is
essential to place the SMM between oppositely spin-polarized source and drain
leads in order to detect the spin tunneling in the stationary current, which
exhibits topological zeros as a function of the transverse magnetic field.Comment: 4 pages, Revtex 4, 4 EPS figure
- …