348 research outputs found
Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (SAGE) I: Overview and Initial Results
We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the
Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the
Spitzer Space Telescope in order to survey the agents of a galaxy's evolution
(SAGE), the interstellar medium (ISM) and stars in the LMC. The detection of
diffuse ISM with column densities >1.2x10^21 H cm^-2 permits detailed studies
of dust processes in the ISM. SAGE's point source sensitivity enables a
complete census of newly formed stars with masses >3 solar masses that will
determine the current star formation rate in the LMC. SAGE's detection of
evolved stars with mass loss rates >1x10^-8 solar masses per year will quantify
the rate at which evolved stars inject mass into the ISM of the LMC. The
observing strategy includes two epochs in 2005, separated by three months, that
both mitigate instrumental artifacts and constrain source variability. The SAGE
data are non-proprietary. The data processing includes IRAC and MIPS pipelines
and a database for mining the point source catalogs, which will be released to
the community in support of Spitzer proposal cycles 4 and 5. We present initial
results on the epoch 1 data with a special focus on the N79 and N83 region. The
SAGE epoch 1 point source catalog has ~4 million sources. The point source
counts are highest for the IRAC 3.6 microns band and decrease dramatically
towards longer wavelengths consistent with the fact that stars dominate the
point source catalogs and that the dusty objects, e.g. young stellar objects
and dusty evolved stars that detected at the longer wavelengths, are rare in
comparison. We outline a strategy for identifying foreground MW stars, that may
comprise as much as 18% of the source list, and background galaxies, that may
comprise ~12% of the source list.Comment: Accepted by the Astronomical Journa
Spitzer survey of the Large Magellanic Cloud, surveying the agents of a galaxy's evolution (SAGE). IV. Dust properties in the interstellar medium
The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 μm to 160 μm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 μm, referred to as the 70 μm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 μm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 μm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding mass increase of ≃13% of the total dust mass in selected regions. The most likely explanation is that the 70 μm excess is due to the production of large very small grains (VSG) through erosion of larger grains in the diffuse medium. This FIR excess could be due to intrinsic variations of the dust/gas ratio, which would then vary from 4.6 to 2.3 times lower than the MW values across the LMC, but X_(CO) values derived from the IR emission would then be about three times lower than those derived from the Virial analysis of the CO data. We also investigate the possibility that the FIR excess is associated with an additional gas component undetected in the available gas tracers. Assuming a constant dust abundance in all ISM phases, the additional gas component would have twice the known H I mass. We show that it is plausible that the FIR excess is due to cold atomic gas that is optically thick in the 21 cm line, while the contribution by a pure H_2 phase with no CO emission remains a possible explanation
Search for CP Violation in the Decay Z -> b (b bar) g
About three million hadronic decays of the Z collected by ALEPH in the years
1991-1994 are used to search for anomalous CP violation beyond the Standard
Model in the decay Z -> b \bar{b} g. The study is performed by analyzing
angular correlations between the two quarks and the gluon in three-jet events
and by measuring the differential two-jet rate. No signal of CP violation is
found. For the combinations of anomalous CP violating couplings, and , limits of \hat{h}_b < 0.59h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st
Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory
Lattice gauge theory continues to be a powerful theoretical and computational
approach to simulating strongly interacting quantum field theories, whose
applications permeate almost all disciplines of modern-day research in
High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor
physics, to uncover signals of new physics in nucleons and nuclei, to elucidate
hadron structure and spectrum, to serve as a numerical laboratory to reach
beyond the Standard Model, or to invent and improve state-of-the-art
computational paradigms, the lattice-gauge-theory program is in a prime
position to impact the course of developments and enhance discovery potential
of a vibrant experimental program in High-Energy Physics over the coming
decade. This projection is based on abundant successful results that have
emerged using lattice gauge theory over the years: on continued improvement in
theoretical frameworks and algorithmic suits; on the forthcoming transition
into the exascale era of high-performance computing; and on a skillful,
dedicated, and organized community of lattice gauge theorists in the U.S. and
worldwide. The prospects of this effort in pushing the frontiers of research in
High-Energy Physics have recently been studied within the U.S. decadal Particle
Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized
in this Topical Report.Comment: 57 pages, 1 figure. Submitted to the Proceedings of the US Community
Study on the Future of Particle Physics (Snowmass 2021). Topical Group Report
for TF05 - Lattice Gauge Theor
Recommended from our members
Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ.
Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-invasive to invasive breast tumor progression, yet their differentiation and perturbation in ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers, myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63 and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1 germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be associated with invasive progression
Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design
© 2021. The Author(s). Published by the American Astronomical Society. This work may be used under the terms of the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey’s massive data throughput will be transformational for many other astrophysics domains and Rubin’s data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.Peer reviewedFinal Published versio
A Study to Assess the Efficacy of Enasidenib and Risk-Adapted Addition of Azacitidine in Newly Diagnosed IDH2-Mutant AML
Enasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine. The phase 2 portion assessing the overall response to ENA alone demonstrated efficacy, with a composite complete response (cCR) rate (CR/CRi) of 46% in 60 evaluable patients. Seventeen patients subsequently transitioned to phase 1b combination therapy, with a cCR rate of 41% and 1 dose-limiting toxicity. Correlative studies highlight mechanisms of clonal elimination with differentiation therapy as well as therapeutic resistance. This study demonstrates both efficacy of ENA monotherapy in the upfront setting and feasibility and applicability of a risk-adapted approach to the upfront treatment of IDH2-mutant AML. This trial is registered at www.clinicaltrials.gov as #NCT03013998
Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors
The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up
Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors
The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up
- …