411 research outputs found

    Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs.

    Get PDF
    ObjectiveThe nonobese diabetic (NOD) mouse is a well-established mouse model of spontaneous type 1 diabetes, which is characterized by an autoimmune destruction of the insulin-secreting pancreatic beta-cells. In this study, we address the role of tertiary lymphoid organs (TLOs) that form in the pancreas of NOD mice during disease progression.MethodsWe developed a model designed to "lock" lymphocytes in the pancreatic lymph node (PLN) and pancreas by the use of FTY720, which blocks the exit of lymphocytes from lymph nodes. A combination of flow cytometry, immunofluorescence, and analysis of clinical scores was used to study the effects of long-term FTY720 treatment on TLO development and development of diabetes.ResultsContinuous treatment of NOD mice with FTY720 prevented diabetes development even at a time of significant insulitis. Treatment withdrawal led to accelerated disease independent of the PLN. Interestingly, naive T-cells trafficked to and proliferated in the TLOs. In addition, morphological changes were observed that occurred during the development of the disease. Remarkably, although the infiltrates are not organized into T/B-cell compartments in 8-week-old mice, by 20 weeks of age, and in age-matched mice undergoing FTY720 treatment, the infiltrates showed a high degree of organization. However, in naturally and FTY720-induced diabetic mice, T/B-cell compartmentalization was lost.ConclusionOur data show that TLOs are established during diabetes development and suggest that islet destruction is due to a loss of TLO integrity, which may be prevented by FTY720 treatment

    Negative Regulation of T Cell Receptor–Lipid Raft Interaction by Cytotoxic T Lymphocyte–associated Antigen 4

    Get PDF
    Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) is an essential negative regulator of T cell activation. Recent evidence suggests that CTLA-4 association with the immunological synapse during contact with antigen-presenting cells is important for its inhibitory function. In the present study, we observed a direct interaction of CTLA-4 with the phosphorylated form of T cell receptor (TCR)ζ within the glycolipid-enriched microdomains associated with the T cell signaling complex. In this setting, CTLA-4 regulated the accumulation/retention of TCRζ in the signaling complex, as the lipid raft fractions from CTLA-4KO T cells contained significantly higher amounts of the TCR components when compared with wild-type littermates. In contrast, coligation of CTLA-4 with the TCR during T cell activation selectively decreased the amount of TCRζ that accumulated in the rafts. These results suggest that CTLA-4 functions to regulate T cell signaling by controlling TCR accumulation and/or retention within this a critical component of the immunological synapse

    Sequential development of interleukin 2–dependent effector and regulatory T cells in response to endogenous systemic antigen

    Get PDF
    Transfer of naive antigen-specific CD4+ T cells into lymphopenic mice that express an endogenous antigen as a systemic, secreted protein results in severe autoimmunity resembling graft-versus-host disease. T cells that respond to this endogenous antigen develop into effector cells that cause the disease. Recovery from this disease is associated with the subsequent generation of FoxP3+CD25+ regulatory cells in the periphery. Both pathogenic effector cells and protective regulatory cells develop from the same antigen-specific T cell population after activation, and their generation may occur in parallel or sequentially. Interleukin (IL)-2 plays a dual role in this systemic T cell reaction. In the absence of IL-2, the acute disease is mild because of reduced T cell effector function, but a chronic and progressive disease develops late and is associated with a failure to generate FoxP3+ regulatory T (T reg) cells in the periphery. Thus, a peripheral T cell reaction to a systemic antigen goes through a phase of effector cell–mediated pathology followed by T reg cell–mediated recovery, and both require the growth factor IL-2

    Opportunities for Treg cell therapy for the treatment of human disease

    Get PDF
    Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmunity, and limiting chronic inflammatory diseases. This small CD4+ T cell population can develop in the thymus and in the peripheral tissues of the immune system through the expression of an epigenetically stabilized transcription factor, FOXP3. Treg cells mediate their tolerogenic effects using multiple modes of action, including the production of inhibitory cytokines, cytokine starvation of T effector (e.g., IL-2), Teff suppression by metabolic disruption, and modulation of antigen-presenting cell maturation or function. These activities together result in the broad control of various immune cell subsets, leading to the suppression of cell activation/expansion and effector functions. Moreover, these cells can facilitate tissue repair to complement their suppressive effects. In recent years, there has been an effort to harness Treg cells as a new therapeutic approach to treat autoimmune and other immunological diseases and, importantly, to re-establish tolerance. Recent synthetic biological advances have enabled the cells to be genetically engineered to achieve tolerance and antigen-specific immune suppression by increasing their specific activity, stability, and efficacy. These cells are now being tested in clinical trials. In this review, we highlight both the advances and the challenges in this arena, focusing on the efforts to develop this new pillar of medicine to treat and cure a variety of diseases

    Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity

    Get PDF
    A new regulatory T (T reg) cell–specific, FoxP3-GFP-hCre bacterial artificial chromosome transgenic mouse was crossed to a conditional Dicer knockout (KO) mouse strain to analyze the role of microRNAs (miRNAs) in the development and function of T reg cells. Although thymic T reg cells developed normally in this setting, the cells showed evidence of altered differentiation and dysfunction in the periphery. Dicer-deficient T reg lineage cells failed to remain stable, as a subset of cells down-regulated the T reg cell–specific transcription factor FoxP3, whereas the majority expressed altered levels of multiple genes and proteins (including Neuropilin 1, glucocorticoid-induced tumor necrosis factor receptor, and cytotoxic T lymphocyte antigen 4) associated with the T reg cell fingerprint. In fact, a significant percentage of the T reg lineage cells took on a T helper cell memory phenotype including increased levels of CD127, interleukin 4, and interferon γ. Importantly, Dicer-deficient T reg cells lost suppression activity in vivo; the mice rapidly developed fatal systemic autoimmune disease resembling the FoxP3 KO phenotype. These results support a central role for miRNAs in maintaining the stability of differentiated T reg cell function in vivo and homeostasis of the adaptive immune system

    Targeting EZH2 Reprograms Intratumoral Regulatory T Cells to Enhance Cancer Immunity.

    Get PDF
    Regulatory T cells (Tregs) are critical for maintaining immune homeostasis, but their presence in tumor tissues impairs anti-tumor immunity and portends poor prognoses in cancer patients. Here, we reveal a mechanism to selectively target and reprogram the function of tumor-infiltrating Tregs (TI-Tregs) by exploiting their dependency on the histone H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) in tumors. Disruption of EZH2 activity in Tregs, either pharmacologically or genetically, drove the acquisition of pro-inflammatory functions in TI-Tregs, remodeling the tumor microenvironment and enhancing the recruitment and function of CD8+ and CD4+ effector T cells that eliminate tumors. Moreover, abolishing EZH2 function in Tregs was mechanistically distinct from, more potent than, and less toxic than a generalized Treg depletion approach. This study reveals a strategy to target Tregs in cancer that mitigates autoimmunity by reprogramming their function in tumors to enhance anti-cancer immunity
    corecore