142 research outputs found

    Alloy Design and Thermomechanical Processing of a Beta Titanium Alloy for a Heavy Vehicle Application

    Get PDF
    With the strength of steel, but at half the weight, titanium has the potential to offer significant benefits in the weight reduction of heavy vehicle components while possibly improving performance. However, the cost of conventional titanium fabrication is a major barrier in implementation. New reduction technologies are now available that have the potential to create a paradigm shift in the way the United States uses titanium, and the economics associated with fabrication of titanium components. This CRADA project evaluated the potential to develop a heavy vehicle component from titanium powders. The project included alloy design, development of manufacturing practices, and modeling the economics associated with the new component. New Beta alloys were designed for this project to provide the required mechanical specifications while utilizing the benefits of the new fabrication approach. Manufacturing procedures were developed specific to the heavy vehicle component. Ageing and thermal treatment optimization was performed to provide the desired microstructures. The CRADA partner established fabrication practices and targeted capital investment required for fabricating the component out of titanium. Though initial results were promising, the full project was not executed due to termination of the effort by the CRADA partner and economic trends observed in the heavy vehicle market

    Mapping the depleted area of silicon diodes using a micro-focused X-ray beam

    Full text link
    For the Phase-II Upgrade of the ATLAS detector at CERN, the current ATLAS Inner Detector will be replaced with the ATLAS Inner Tracker. The ATLAS Inner Tracker will be an all-silicon detector, consisting of a pixel tracker and a strip tracker. Sensors for the ITk strip tracker are required to have a low leakage current up to bias voltages of -700 V to maintain a low noise and power dissipation. In order to minimise sensor leakage currents, particularly in the high-radiation environment inside the ATLAS detector, sensors are foreseen to be operated at low temperatures and to be manufactured from wafers with a high bulk resistivity of several k{\Omega} cm. Simulations showed the electric field inside sensors with high bulk resistivity to extend towards the sensor edge, which could lead to increased surface currents for narrow dicing edges. In order to map the electric field inside biased silicon sensors with high bulk resistivity, three diodes from ATLAS silicon strip sensor prototype wafers were studied with a monochromatic, micro-focused X-ray beam at the Diamond Light Source. For all devices under investigation, the electric field inside the diode was mapped and its dependence on the applied bias voltage was studied. The findings showed that the electric field in each diode under investigation extended beyond its bias ring and reached the dicing edge

    Neutron Characterization for Additive Manufacturing

    Get PDF
    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components

    Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight

    Get PDF
    Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight

    Price's Law on Nonstationary Spacetimes

    Get PDF
    In this article we study the pointwise decay properties of solutions to the wave equation on a class of nonstationary asymptotically flat backgrounds in three space dimensions. Under the assumption that uniform energy bounds and a weak form of local energy decay hold forward in time we establish a t−3t^{-3} local uniform decay rate (Price's law \cite{MR0376103}) for linear waves. As a corollary, we also prove Price's law for certain small perturbations of the Kerr metric. This result was previously established by the second author in \cite{Tat} on stationary backgrounds. The present work was motivated by the problem of nonlinear stability of the Kerr/Schwarzschild solutions for the vacuum Einstein equations, which seems to require a more robust approach to proving linear decay estimates.Comment: 32 pages, no figures, typos correcte

    Effect of heating rate on recrystallization of twin roll cast aluminum

    Get PDF
    Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 39A(1): pp. 165-170.The effect of heating rate on precipitation and recrystallization behavior in twin roll cast (TRC) AA3105 has been investigated by three different means: conventional air furnace, controlled infrared, and lead bath heating. Experimental results showed that as-recrystallized grain size decreased and became more equiaxed as the annealing heating rate increased. These results were explained via time-temperature-transformation (TTT) curves for both dispersoid precipitation and recrystallization. With the faster heating rate, recrystallization could occur before precipitation of Mn present in the unhomogenized TRC samples. At a heating rate of 50 degree C/s the material underwent grain growth after recrystallization at 500 degree C. No sign of grain growth was observed in materials annealed with lower heating rates, 3 degrees C/s, 0.5 degree C/s, and 0.01 degree C/s due to greater dispersoid precipitation

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Inclusive and differential cross-section measurements of t\bartZ production in pp collisions at √s=13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations

    Get PDF
    Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a Z boson (tt¯Z) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in pp collisions at s√=13 TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of 140 fb−1. The inclusive cross section is measured to be σtt¯Z=0.86±0.04 (stat.)±0.04 (syst.) pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the tt¯Z system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in tt¯Z events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of 1.8 standard deviations
    • …
    corecore