8 research outputs found

    Pesticide Research on Environmental and Human Exposure and Risks in Sub-Saharan Africa: A Systematic Literature Review

    Get PDF
    On the African continent, ongoing agriculture intensification is accompanied by the increasing use of pesticides, associated with environmental and public health concerns. Using a systematic literature review, we aimed to map current geographical research hotspots and gaps around environmental and public health risks research of agriculture pesticides in Sub-Saharan Africa (SSA). Studies were included that collected primary data on past and current-used agricultural pesticides and assessed their environmental occurrence, related knowledge, attitude and practice, human exposure, and environmental or public health risks between 2006 and 2021. We identified 391 articles covering 469 study sites in 37 countries in SSA. Five geographical research hotspots were identified: two in South Africa, two in East Africa, and one in West Africa. Despite its ban for agricultural use, organochlorine was the most studied pesticide group (60%; 86% of studies included DDT). Current-used pesticides in agriculture were studied in 54% of the study sites (including insecticides (92%), herbicides (44%), and fungicides (35%)). Environmental samples were collected in 67% of the studies (e.g., water, aquatic species, sediment, agricultural produce, and air). In 38% of the studies, human subjects were investigated. Only few studies had a longitudinal design or assessed pesticide’s environmental risks; human biomarkers; dose-response in human subjects, including children and women; and interventions to reduce pesticide exposure. We established a research database that can help stakeholders to address research gaps, foster research collaboration between environmental and health dimensions, and work towards sustainable and safe agriculture systems in SSA

    Pesticide research on environmental and human exposure and risks in sub-saharan africa: A systematic literature review

    Get PDF
    On the African continent, ongoing agriculture intensification is accompanied by the increas-ing use of pesticides, associated with environmental and public health concerns. Using a systematic literature review, we aimed to map current geographical research hotspots and gaps around environmental and public health risks research of agriculture pesticides in Sub-Saharan Africa (SSA). Studies were included that collected primary data on past and current-used agricultural pesticides and assessed their environmental occurrence, related knowledge, attitude and practice, human exposure, and environmental or public health risks between 2006 and 2021. We identified 391 articles covering 469 study sites in 37 countries in SSA. Five geographical research hotspots were identified: two in South Africa, two in East Africa, and one in West Africa. Despite its ban for agricultural use, organochlorine was the most studied pesticide group (60%; 86% of studies included DDT). Current-used pesticides in agriculture were studied in 54% of the study sites (including insecticides (92%), herbicides (44%), and fungicides (35%)). Environmental samples were collected in 67% of the studies (e.g., water, aquatic species, sediment, agricultural produce, and air). In 38% of the studies, human subjects were investigated. Only few studies had a longitudinal design or assessed pesticide’s environmental risks; human biomarkers; dose-response in human subjects, including children and women; and interventions to reduce pesticide exposure. We established a research database that can help stakeholders to address research gaps, foster research collaboration between environmental and health dimensions, and work towards sustainable and safe agriculture systems in SSA

    Pesticide research on environmental and human exposure and risks in sub-saharan africa: A systematic literature review

    Get PDF
    On the African continent, ongoing agriculture intensification is accompanied by the increas-ing use of pesticides, associated with environmental and public health concerns. Using a systematic literature review, we aimed to map current geographical research hotspots and gaps around environmental and public health risks research of agriculture pesticides in Sub-Saharan Africa (SSA). Studies were included that collected primary data on past and current-used agricultural pesticides and assessed their environmental occurrence, related knowledge, attitude and practice, human exposure, and environmental or public health risks between 2006 and 2021. We identified 391 articles covering 469 study sites in 37 countries in SSA. Five geographical research hotspots were identified: two in South Africa, two in East Africa, and one in West Africa. Despite its ban for agricultural use, organochlorine was the most studied pesticide group (60%; 86% of studies included DDT). Current-used pesticides in agriculture were studied in 54% of the study sites (including insecticides (92%), herbicides (44%), and fungicides (35%)). Environmental samples were collected in 67% of the studies (e.g., water, aquatic species, sediment, agricultural produce, and air). In 38% of the studies, human subjects were investigated. Only few studies had a longitudinal design or assessed pesticide’s environmental risks; human biomarkers; dose-response in human subjects, including children and women; and interventions to reduce pesticide exposure. We established a research database that can help stakeholders to address research gaps, foster research collaboration between environmental and health dimensions, and work towards sustainable and safe agriculture systems in SSA

    Associations between polygenic risk score loading, psychosis liability, and clozapine use among individuals with schizophrenia

    No full text
    Importance: Predictors consistently associated with psychosis liability and course of illness in schizophrenia (SCZ) spectrum disorders (SSD), including the need for clozapine treatment, are lacking. Longitudinally ascertained medication use may empower studies examining associations between polygenic risk scores (PRSs) and pharmacotherapy choices. Objective: To examine associations between PRS-SCZ loading and groups with different liabilities to SSD: individuals with SSD on clozapine, individuals with SSD on other antipsychotics, their parents and siblings, and unrelated healthy controls; and between PRS-SCZ and the likelihood of receiving a prescription of clozapine relative to other antipsychotics. Design: Six-year follow-up and cross-sectional observational cohort study. Setting: Multi-center. Participants: Individuals diagnosed with SSD using clozapine or other antipsychotics, their parents and siblings, and unrelated healthy controls. Exposure: PRS-SCZ. Main Outcomes and Measures: We used multinomial logistic regression to examine possible differences between groups by computing risk ratios (RRs), i.e., ratios of the probability of pertaining to a particular group divided by the probability of healthy control status. We also computed PRS-informed odd ratios (ORs) for clozapine use relative to other antipsychotics. Results: PRSs-SCZ were generated for 2344 participants (mean age: 36.95 years; 42.4% female) remaining after quality control (557 individuals with SSD on clozapine, 350 individuals with SSD on other antipsychotics during six-year follow-up, 542 parents and 574 siblings of individuals with SSD, and 321 unrelated healthy controls). All RRs were significantly different from 1; RRs were highest for individuals with SSD on clozapine (RR=3.24 [95%CI 2.76-3.81], p=2.47x10-46), followed by individuals with SSD on other antipsychotics (RR=2.30 [95%CI 1.95-2.72], p=3.77x10-22), parents (RR=1.44 [95%CI 1.25-1.68], p=1.76x10-6), and siblings (RR=1.40 [95%CI 1.21-1.63], p=8.22x10-6). PRS-SCZ was positively associated with clozapine versus other antipsychotic use (OR=1.41 [95%CI 1.22-1.63], p=2.98x10-6), suggesting a higher likelihood of clozapine prescriptions in individuals with higher PRS-SCZ. Conclusions and Relevance: PRS-SCZ loading differs between groups of individuals with SSD, their relatives, and unrelated healthy controls, with clozapine users being at the far end of PRS-SCZ loading. Additionally, PRS-SCZ is associated with a higher likelihood of clozapine prescribing. Our findings may inform early intervention and prognostic studies into the value of PRS-SCZ for personalized antipsychotic treatment

    Associations Between Polygenic Risk Score Loading, Psychosis Liability, and Clozapine Use Among Individuals With Schizophrenia

    No full text
    IMPORTANCE: Predictors consistently associated with psychosis liability and course of illness in schizophrenia (SCZ) spectrum disorders (SSD), including the need for clozapine treatment, are lacking. Longitudinally ascertained medication use may empower studies examining associations between polygenic risk scores (PRSs) and pharmacotherapy choices. OBJECTIVE: To examine associations between PRS-SCZ loading and groups with different liabilities to SSD (individuals with SSD taking clozapine, individuals with SSD taking other antipsychotics, their parents and siblings, and unrelated healthy controls) and between PRS-SCZ and the likelihood of receiving a prescription of clozapine relative to other antipsychotics. DESIGN, SETTING, AND PARTICIPANTS: This genetic association study was a multicenter, observational cohort study with 6 years of follow-up. Included were individuals diagnosed with SSD who were taking clozapine or other antipsychotics, their parents and siblings, and unrelated healthy controls. Data were collected from 2004 until 2021 and analyzed between October 2021 and September 2022. EXPOSURES: Polygenic risk scores for SCZ. MAIN OUTCOMES AND MEASURES: Multinomial logistic regression was used to examine possible differences between groups by computing risk ratios (RRs), ie, ratios of the probability of pertaining to a particular group divided by the probability of healthy control status. We also computed PRS-informed odd ratios (ORs) for clozapine use relative to other antipsychotics. RESULTS: Polygenic risk scores for SCZ were generated for 2344 participants (mean [SD] age, 36.95 years [14.38]; 994 female individuals [42.4%]) who remained after quality control screening (557 individuals with SSD taking clozapine, 350 individuals with SSD taking other antipsychotics during the 6-year follow-up, 542 parents and 574 siblings of individuals with SSD, and 321 unrelated healthy controls). All RRs were significantly different from 1; RRs were highest for individuals with SSD taking clozapine (RR, 3.24; 95% CI, 2.76-3.81; P = 2.47 × 10-46), followed by individuals with SSD taking other antipsychotics (RR, 2.30; 95% CI, 1.95-2.72; P = 3.77 × 10-22), parents (RR, 1.44; 95% CI, 1.25-1.68; P = 1.76 × 10-6), and siblings (RR, 1.40; 95% CI, 1.21-1.63; P = 8.22 × 10-6). Polygenic risk scores for SCZ were positively associated with clozapine vs other antipsychotic use (OR, 1.41; 95% CI, 1.22-1.63; P = 2.98 × 10-6), suggesting a higher likelihood of clozapine prescriptions among individuals with higher PRS-SCZ. CONCLUSIONS AND RELEVANCE: In this study, PRS-SCZ loading differed between groups of individuals with SSD, their relatives, and unrelated healthy controls, with patients taking clozapine at the far end of PRS-SCZ loading. Additionally, PRS-SCZ was associated with a higher likelihood of clozapine prescribing. Our findings may inform early intervention and prognostic studies of the value of using PRS-SCZ to personalize antipsychotic treatment

    Associations between polygenic risk score loading, psychosis liability, and clozapine use among individuals with schizophrenia

    No full text
    Importance: Predictors consistently associated with psychosis liability and course of illness in schizophrenia (SCZ) spectrum disorders (SSD), including the need for clozapine treatment, are lacking. Longitudinally ascertained medication use may empower studies examining associations between polygenic risk scores (PRSs) and pharmacotherapy choices. Objective: To examine associations between PRS-SCZ loading and groups with different liabilities to SSD (individuals with SSD taking clozapine, individuals with SSD taking other antipsychotics, their parents and siblings, and unrelated healthy controls) and between PRS-SCZ and the likelihood of receiving a prescription of clozapine relative to other antipsychotics. Design, Setting, and Participants: This genetic association study was a multicenter, observational cohort study with 6 years of follow-up. Included were individuals diagnosed with SSD who were taking clozapine or other antipsychotics, their parents and siblings, and unrelated healthy controls. Data were collected from 2004 until 2021 and analyzed between October 2021 and September 2022. Exposures: Polygenic risk scores for SCZ. Main Outcomes and Measures: Multinomial logistic regression was used to examine possible differences between groups by computing risk ratios (RRs), ie, ratios of the probability of pertaining to a particular group divided by the probability of healthy control status. We also computed PRS-informed odd ratios (ORs) for clozapine use relative to other antipsychotics. Results: Polygenic risk scores for SCZ were generated for 2344 participants (mean [SD] age, 36.95 years [14.38]; 994 female individuals [42.4%]) who remained after quality control screening (557 individuals with SSD taking clozapine, 350 individuals with SSD taking other antipsychotics during the 6-year follow-up, 542 parents and 574 siblings of individuals with SSD, and 321 unrelated healthy controls). All RRs were significantly different from 1; RRs were highest for individuals with SSD taking clozapine (RR, 3.24; 95% CI, 2.76-3.81; P = 2.47 × 10−46), followed by individuals with SSD taking other antipsychotics (RR, 2.30; 95% CI, 1.95-2.72; P = 3.77 × 10−22), parents (RR, 1.44; 95% CI, 1.25-1.68; P = 1.76 × 10−6), and siblings (RR, 1.40; 95% CI, 1.21-1.63; P = 8.22 × 10−6). Polygenic risk scores for SCZ were positively associated with clozapine vs other antipsychotic use (OR, 1.41; 95% CI, 1.22-1.63; P = 2.98 × 10−6), suggesting a higher likelihood of clozapine prescriptions among individuals with higher PRS-SCZ. Conclusions and Relevance: In this study, PRS-SCZ loading differed between groups of individuals with SSD, their relatives, and unrelated healthy controls, with patients taking clozapine at the far end of PRS-SCZ loading. Additionally, PRS-SCZ was associated with a higher likelihood of clozapine prescribing. Our findings may inform early intervention and prognostic studies of the value of using PRS-SCZ to personalize antipsychotic treatment
    corecore