1,570 research outputs found
Existence of the Stark-Wannier quantum resonances
In this paper we prove the existence of the Stark-Wannier quantum resonances
for one-dimensional Schrodinger operators with smooth periodic potential and
small external homogeneous electric field. Such a result extends the existence
result previously obtained in the case of periodic potentials with a finite
number of open gaps.Comment: 30 pages, 1 figur
Electron energy spectrum and the Berry phase in graphite bilayer
We emphasize that there exist four Dirac-type points in the electron-energy
spectrum of a graphite bilayer near the point K of its Brillouin zone. One of
the Dirac points is at the point K, and three Dirac points lie nearby. Each of
these three points generates the Berry phase , while the Dirac point at K
gives the phase . It is these four points that determine the Berry phase
in the bilayer. If an electron orbit surrounds all these points, the Berry
phase is equal to .Comment: 4 pages, 2 figures, submitted to Phys. Rev. B ; expande
All-optically induced ultrafast photocurrents: Beyond the instantaneous coherent response
It is demonstrated that the non-instantaneous response of the optically
induced coherent polarization tremendously influences the real-space shift of
electronic charges in semiconductors. The possibility to coherently control
this real-space shift with temporally non-overlapping excitation pulses allows
for the observation of a new type of shift current, which only exists for
certain polarization-shaped excitation pulses and vanishes in the
continuous-wave limit. In contrast to previously studied shift currents, the
new current requires a phase mismatch between two orthogonal transition dipole
moments and leads, within a nonlinear second-order description, to a tensor
which is antisymmetric with respect to the order of the two exciting electric
field amplitudes. These observations, which can even be made at room
temperature and are expected to occur in a variety of semiconductor crystal
classes, contribute to a better understanding of light-matter interaction
involving degenerate bands. Thus, they are expected to prove important for
future studies of coherent and nonlinear optical effects in semiconductors
Methodological confounds of measuring urinary oxidative stress in wild animals
Abstract Biomarkers of oxidative stress (OS) are useful in addressing a wide range of research questions, but thus far, they have had limited application to wild mammal populations due to a reliance on blood or tissue sampling. A shift toward non‐invasive measurement of OS would allow field ecologists and conservationists to apply this method more readily. However, the impact of methodological confounds on urinary OS measurement under field conditions has never been explicitly investigated. We combined a cross‐sectional analysis with a field experiment to assess the impact of four potential methodological confounds on OS measurements: (1) time of sampling, (2) environmental contamination from foliage; (3) delay between sample collection and flash‐freezing in liquid nitrogen; and (4) sample storage of up to 15 months below −80°C. We measured DNA oxidative damage (8‐hydroxy‐2′‐deoxyguanosine, 8‐OHdG), lipid peroxidation (malondialdehyde, MDA), total antioxidant capacity (TAC), and uric acid (UA) in 167 urine samples collected from wild Zanzibar red colobus (Piliocolobus kirkii). We found that MDA was higher in samples collected in the morning than in the afternoon but there were no diurnal patterns in any of the other markers. Contamination of samples from foliage and length of time frozen at −80°C for up to 15 months did not affect OS marker concentrations. Freezing delay did not affect OS levels cross‐sectionally, but OS values from individual samples showed only moderate‐to‐good consistency and substantial rank‐order reversals when exposed to different freezing delays. We recommend that diurnal patterns of OS markers and the impact of storage time before and after freezing on OS marker concentrations be considered when designing sampling protocols. However, given the high stability we observed for four OS markers subject to a variety of putative methodological confounds, we suggest that urinary OS markers provide a valuable addition to the toolkit of field ecologists and conservationists within reasonable methodological constraints
Superconductivity in ferromagnetic metals and in compounds without inversion centre
The symmetry properties and the general overview of the superconductivity
theory in the itinerant ferromagnets and in materials without space parity are
presented. The basic notions of unconventional superconductivity are introduced
in broad context of multiband superconductivity which is inherent property of
ferromagnetic metals or metals without centre of inversion.Comment: 38 pages, no figure
Spectral and Fermi surface properties from Wannier interpolation
We present an efficient first-principles approach for calculating Fermi
surface averages and spectral properties of solids, and use it to compute the
low-field Hall coefficient of several cubic metals and the magnetic circular
dichroism of iron. The first step is to perform a conventional first-principles
calculation and store the low-lying Bloch functions evaluated on a uniform grid
of k-points in the Brillouin zone. We then map those states onto a set of
maximally-localized Wannier functions, and evaluate the matrix elements of the
Hamiltonian and the other needed operators between the Wannier orbitals, thus
setting up an ``exact tight-binding model.'' In this compact representation the
k-space quantities are evaluated inexpensively using a generalized
Slater-Koster interpolation. Because of the strong localization of the Wannier
orbitals in real space, the smoothness and accuracy of the k-space
interpolation increases rapidly with the number of grid points originally used
to construct the Wannier functions. This allows k-space integrals to be
performed with ab-initio accuracy at low cost. In the Wannier representation,
band gradients, effective masses, and other k-derivatives needed for transport
and optical coefficients can be evaluated analytically, producing numerically
stable results even at band crossings and near weak avoided crossings.Comment: 12 pages, 7 figure
Rigorous definition of oxidation states of ions in solids
We present justification and rigorous procedure for electron partitioning
among atoms in extended systems. The method is based on wavefunction topology
and the modern theory of polarization, rather than charge density partitioning
or wavefunction projection, and, as such, re-formulates the concept of
oxidation state without assuming real-space charge transfer between atoms. This
formulation provides rigorous electrostatics of finite extent solids, including
films and nanowires.Comment: 4 pages, 3 figure
Quantum kinetic theory of shift current electron pumping in semiconductors
We develop a theory of laser beam generation of shift currents in
non-centrosymmetric semiconductors. The currents originate when the excited
electrons transfer between different bands or scatter inside these bands, and
asymmetrically shift their centers of mass in elementary cells. Quantum kinetic
equations for hot-carrier distributions and expressions for the induced
currents are derived by nonequilibrium Green functions. In applications, we
simplify the approach to the Boltzmann limit and use it to model laser-excited
GaAs in the presence of LO phonon scattering. The shift currents are calculated
in a steady-state regime.Comment: 23 pages, 5 figures (Latex
Wannier functions of elliptic one-gap potentials
Wannier functions of the one dimensional Schroedinger equation with elliptic
one gap potentials are explicitly constructed. Properties of these functions
are analytically and numerically investigated. In particular we derive an
expression for the amplitude of the Wannier function in the origin, a power
series expansion valid in the vicinity of the origin and an asymptotic
expansion characterizing the decay of the Wannier function at large distances.
Using these results we construct an approximate analytical expression of the
Wannier function which is valid in the whole spatial domain and is in good
agreement with numerical results.Comment: 24 pages, 5 figure
Anomalous Hall effect in 2D Dirac band: link between Kubo-Streda formula and semiclassical Boltzmann equation approach
The anomalous Hall effect (AHE) is a consequence of spin-orbit coupling in a
ferromagnetic metal and is related primarily to density-matrix response to an
electric field that is off-diagonal in band index. For this reason disorder
contributions to the AHE are difficult to treat systematically using a
semi-classical Boltzmann equation approach, even when weak localization
corrections are disregarded. In this article we explicitly demonstrate the
equivalence of an appropriately modified semiclassical transport theory which
includes anomalous velocity and side jump contributions and microscopic
Kubo-Streda perturbation theory, with particular unconventional contributions
in the semiclassical theory identified with particular Feynman diagrams when
calculations are carried out in a band-eigenstate representation. The
equivalence we establish is verified by explcit calculations for the case of
the two-dimensional (2D) Dirac model Hamiltonian relevant to graphene.Comment: 17 pages, 13 figure
- …