43 research outputs found

    The importance of human dimensions research in managing harmful algal blooms

    Get PDF
    Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 8 (2010): 75–83, doi:10.1890/070181.Harmful algal blooms (HABs) are natural freshwater and marine hazards that impose substantial adverse impacts on the human use of coastal and marine resources. The socioeconomic and health impacts of HABs can be considerable, thereby making a case for “human dimensions” research to support HAB response. Human dimensions research is multidisciplinary, integrating social science, humanities, and other fields with natural science to enhance resource management by addressing human causes, consequences, and responses to coastal environmental problems. Case studies reported here illustrate the importance of human dimensions research. Incorporating such research into the scientific agenda – as well as into management decisions of public agencies concerned with natural resource management, environmental protection, and public health and welfare – requires the development of both strategic guidance and institutional capacity. The recent development of a multi-agency research strategy for HAB response and a strategic plan for human dimensions research represent two important steps in this direction.This paper was developed with partial support from NOAA’s National Centers for Coastal and Ocean Science

    Investigating Childhood Leukemia in Churchill County, Nevada

    Get PDF
    BACKGROUND: Sixteen children diagnosed with acute leukemia between 1997 and 2002 lived in Churchill County, Nevada, at the time of or before their illness. Considering the county population and statewide cancer rate, fewer than two cases would be expected. OBJECTIVES: In March 2001, the Centers for Disease Control and Prevention led federal, state, and local agencies in a cross-sectional, case-comparison study to determine if ongoing environmental exposures posed a health risk to residents and to compare levels of contaminants in environmental and biologic samples collected from participating families. METHODS: Surveys with more than 500 variables were administered to 205 people in 69 families. Blood, urine, and cheek cell samples were collected and analyzed for 139 chemicals, eight viral markers, and several genetic polymorphisms. Air, water, soil, and dust samples were collected from almost 80 homes to measure more than 200 chemicals. RESULTS: The scope of this cancer cluster investigation exceeded any previous study of pediatric leukemia. Nonetheless, no exposure consistent with leukemia risk was identified. Overall, tungsten and arsenic levels in urine and water samples were significantly higher than national comparison values; however, levels were similar among case and comparison groups. CONCLUSIONS: Although the cases in this cancer cluster may in fact have a common etiology, their small number and the length of time between diagnosis and our exposure assessment lessen the ability to find an association between leukemia and environmental exposures. Given the limitations of individual cancer cluster investigations, it may prove more efficient to pool laboratory and questionnaire data from similar leukemia clusters

    Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics

    Get PDF
    We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design

    Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Get PDF
    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions

    Synthetic yeast chromosome XI design enables extrachromosomal circular DNA formation on demand

    Get PDF
    We describe construction of the 660 kilobase synthetic yeast chromosome XI (synXI) and reveal how synthetic redesign of non-coding DNA elements impact the cell. To aid construction from synthesized 5 to 10 kilobase DNA fragments, we implemented CRISPR-based methods for synthetic crossovers in vivo and used these methods in an extensive process of bug discovery, redesign and chromosome repair, including for the precise removal of 200 kilobases of unexpected repeated sequence. In synXI, the underlying causes of several fitness defects were identified as modifications to non-coding DNA, including defects related to centromere function and mitochondrial activity that were subsequently corrected. As part of synthetic yeast chromosome design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show here that targeted insertion of these sites can be used to create extrachromosomal circular DNA on demand, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI has uncovered effects of non-coding and extrachromosomal circular DNA, contributing to better understanding of these elements and informing future synthetic genome design

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program “Advanced Instrumentation for Wildlife Protection”, Fondation SegrĂ©, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier d’Auvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governor’s Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Özkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, vĂŠrdier og vĂŠrktĂžjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de DouĂ©-la-Fontaine, Zoo Dresden, Zoo Idaho, KolmĂ„rden Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y TecnologĂ­a (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the “Investissements d’avenir” program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMĂ©RA/Aix-Marseille UniversitĂ©, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Exploring fishing dependence in gulf coast communities

    No full text
    Two unrelated data sources (quantitative secondary data and qualitative primary data) and mixed methodologies (statistical analysis and ethnography) are used to define the concept of, and develop indicators for, fishing dependence. Techniques for integrating differing data sources are developed. Comparisons of the qualitative rankings with the quantitative rankings were, overall, positive and statistically significant. The process used thus confirmed that the indicators were reliable measures for fishing dependence. In terms of external validity and triangulation, the process used was more rigorous than using ethnography "after-the-fact" to ground-truth the quantitative indicators.Fishing dependence Social indicators Ethnography Evaluation

    Analysis of Cannabinoids and Their Metabolites in Human Urine

    No full text
    corecore