5,454 research outputs found

    The Impact of Recent Extradition Cases Involving Canada and the United States: A Canadian Perspective

    Get PDF
    extradition in Canada and the United State

    Gravitational Interactions in a General Multibrane Model

    Full text link
    The gravitational interactions of the four-dimensional effective theory describing a general NN-brane model in five dimensions without radion stabilization are analyzed. Both uncompactified and orbifolded models are considered. The parameter space is constrained by requiring that there be no ghost modes in the theory, and that the Eddington parameterized post-Newtonian parameter γ\gamma be consistent with observations. We show that we must reside on the brane on which the warp factor is maximized. The resultant theory contains N1N-1 radion modes in a nonlinear sigma model, with the target space being a subset of hyperbolic space. Imposing observational constraints on the relative strengths of gravitational interactions of dark and visible matter shows that at least 99.8% of the dark matter must live on our brane in this model.Comment: 18 pages, 4 figures. Version 2 (submitted to PRD) adds analysis on orbifold

    Trade studies for nuclear space power systems

    Get PDF
    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration

    Coupled quintessence and vacuum decay

    Full text link
    We discuss observational consequences of a class of cosmological models characterized by the dilution of pressureless matter attenuated with respect to the usual a3a^{-3} scaling due to the decay of vacuum energy. We carry out a joint statistical analysis of observational data from the new \emph{gold} sample of 182 SNe Ia, recent estimates of the CMB shift parameter, and BAO measurements from the SDSS to show that such models favor the decay of vacuum only into the dark matter sector, and that the separately conserved baryons cannot be neglected. In order to explore ways to more fundamentally motivated models, we also derive a coupled scalar field version for this general class of vacuum decay scenarios.Comment: 6 pages, 3 figures, LaTe

    Validating performance of automotive materials at high strain rate for improved crash design

    Get PDF
    This paper investigates sources of performance variability in high velocity testing of automotive crash structures. Sources of variability, or so called noise factors, present in a testing environment, arise from uncertainty in structural properties, joints, boundary conditions and measurement system. A box structure, which is representative of a crash component, is designed and fabricated from a high strength Dual Phase sheet steel. Crush tests are conducted at low and high speed. Such tests intend to validate a component model and material strain rate sensitivity data determined from high speed tensile testing. To support experimental investigations, stochastic modeling is used to investigate the effect of noise factors on crash structure performance variability, and to identify suitable performance measures to validate a component model and material strain rate sensitivity data. The results of the project will enable the measurement of more reliable strain rate sensitivity data for improved crashworthiness predictions of automotive structures

    An investigation of Fe XV emission lines in solar flare spectra

    Full text link
    Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 A wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 A), performed using the most recent Fe XV atomic physics calculations in conjunction with a CHIANTI synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e. ~ 0.1 A). An exception is the intensity ratio I(321.8 A)/I(327.0 A), which appears to provide good estimates of the electron density at this spectral resolution.Comment: 6 pages, 3 figures, Astronomy & Astrophysics, in pres

    Effects of Sex and Gender on Adaptation to Space: Musculoskeletal Health

    Get PDF
    There is considerable variability among individuals in musculoskeletal response to long-duration spaceflight. The specific origin of the individual variability is unknown but is almost certainly influenced by the details of other mission conditions such as individual differences in exercise countermeasures, particularly intensity of exercise, dietary intake, medication use, stress, sleep, psychological profiles, and actual mission task demands. In addition to variations in mission conditions, genetic differences may account for some aspect of individual variability. Generally, this individual variability exceeds the variability between sexes that adds to the complexity of understanding sex differences alone. Research specifically related to sex differences of the musculoskeletal system during unloading is presented and discussed
    corecore