3,804 research outputs found

    Worst Case Reliability Prediction Based on a Prior Estimate of Residual Defects

    Get PDF
    In this paper we extend an earlier worst case bound reliability theory to derive a worst case reliability function R(t), which gives the worst case probability of surviving a further time t given an estimate of residual defects in the software N and a prior test time T. The earlier theory and its extension are presented and the paper also considers the case where there is a low probability of any defect existing in the program. For the "fractional defect" case, there can be a high probability of surviving any subsequent time t. The implications of the theory are discussed and compared with alternative reliability models

    A Methodology for Safety Case Development

    Get PDF
    This paper will outline a safety case methodology that seeks to minimise safety risks and commercial risks by constructing a demonstrable safety case. The safety case ideas presented here were initially developed in an EU-sponsored SHIP project [1] and was then further developed in the UK Nuclear Safety Research Programme (the QUARC Project [2]). Some of these concepts have subsequently been incorporated in safety standards such as MOD Def Stan 00-55, and have also been used to establish specific safety cases for clients. A generalisation of the concepts also appears in Def Stan 00-42 Part 2, in the form of the software reliability case

    History and development of validation with the ESP-r simulation program

    Get PDF
    It is well recognised that validation of dynamic building simulation programs is a long-term complex task. There have been many large national and international efforts that have led to a well-established validation methodology comprising analytical, inter-program comparison and empirical validation elements, and a significant number of tests have been developed. As simulation usage increases, driven by such initiatives as the European Energy Performance of Buildings Directive, such tests are starting to be incorporated into national and international standards. Although many program developers have run many of the developed tests, there does not appear to have been a systematic attempt to incorporate such tests into routine operation of the simulation programs. This paper reports work undertaken to address this deficiency. The paper summarizes the tests that have been applied to the simulation program ESP-r. These tests have been developed within International Energy Agency Annexes, within CEN standards, within various large-scale national projects, and by the UK's Chartered Institution of Building Services Engineers. The structure used to encapsulate the tests allows developers to ensure that recent code modifications have not resulted in unforeseen impacts on program predictions, and allows users to check for themselves against benchmarks
    corecore