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Abstract

In this paper we extend an earlier worst case bound
reliability theory to derive a worst case reliability
function R(t), which gives the worst case probability of
surviving a further time t given an estimate of residual
defects in the software and a prior test time T.

The earlier theory and its extension are presented and
the paper also considers the case where there is a low
probability of any defect existing in the program. The
implications of the theory are discussed and compared
with alternative reliability models.

1. Introduction

In previous research [2] we derived a worst case bound on
the expected failure rate given that a program contained N
residual defects and had been tested for time T.

In this paper we extend this theory to derive a worst
case reliability function R(t), which gives the worst case
probability of surviving a further time t given N defects
and a prior test time T.

The paper will first summarise the original worst case
bound theory and then present an extension of the theory
that derives a worst case reliability function. We also
consider the case of a fractional defect where there is a
low probability of a defect existing in the program. The
implications of the theory are discussed and compared
with a similar theory developed by Littlewood and
Strigini [7].

2. Original worst case bound theory

The observed reliability of a system containing design
defects depends on the failure rates of the defects (λ1 ..
λΝ)  under a given operational profile. While there are a
range of methods for estimating the likely number of
software defects, N, there is no way to establish the failure
rate for unknown software defects. However the theory
developed in [2] can place a worst case bound on the

failure rate for all the defects based on the amount of
usage time and an estimate of the number of defects. The
theory makes the relatively standard reliability modelling
assumptions that:
• removing a defect does not affect the failure rates of

the remaining defects
• the failure rates of the defects can be represented by

λ1 .. λΝ, which do not change with time (i.e. the input
distribution I is stable)

• The defect failure regions are disjoint so the program
failure rate is the sum of the defect failure rates

• any defect exhibiting a failure will be detected and
corrected immediately
The basic idea behind the model is very simple; once

the software has been operating for some time, defects
with the highest failure rates will be removed, while
defects with low failure rates only make a small
contribution to the residual software failure rate. Thus for
any time T there is a worst case defect failure rate which
maximises the residual software failure rate.

Put more formally, using the assumptions given above,
a defect i with a perceived failure rate λι can survive a
usage time T with a probability of:

P(Tfail > T) = Te λ−

A defect can only contribute to the future unreliability of
the program if it survives, so the expected failure
intensity, θi(T), due to defect i after time T will be:

T
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Differentiating with respect to λi , the maximum value of
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Substituting back, it follows that the maximum expected
failure intensity of any defect i after the software has
operated for a time T is:

T
e
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This result is independent of the actual failure rate of the
defect, as illustrated in the Figure 1 below where the
expected failure intensity is plotted for different values of
λi .
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Figure 1.  Illustration of the worst case bound

It is clear that, regardless of the value of λι, the expected
failure intensity per test after T tests, θi (Τ), is bounded by
1/eT.

We can sum the worst bounds for all N defects to
derive a worst case bound for the expected failure
intensity of the whole program after time T, θ(T), i.e.:

eT
N

T  )( <θ

If the model assumptions apply and we can estimate the
number of defects N at T=0 (e.g. using estimation
methods such as [3,6,8,9]) the reliability growth can be
bounded at any future time T. Unlike conventional
reliability models this theory takes no account of observed
failures. The theory does not tell us when (or even if) the
defects will be found, but it does set a quantitative bound
on the failure intensity after any period of execution and
correction and this bound always decreases with
increasing execution time.

Note that this is the maximum expected failure
intensity. For any specific test interval T, there is a finite
probability that the observed failure intensity is greater

than the expected value. For example, a defect with λ=4/T
has approximately a 2% chance of surviving a test period
T. So for 2 cases in 100 the subsequent failure intensity
could be 4/T, and for the other 98 cases the subsequent
failure intensity is zero. The expected failure intensity is
the average over all cases so for a 4/T defect this average
is approximately 0.05T. If the defect has the “worst case”
failure rate, λ=1/T, then in 37% of cases (1/e) the
subsequent failure intensity is 1/T, while in the remaining
63% of cases the failure intensity is zero. In this particular
case the expected failure intensity is at its maximum value
(1/eT).

So with a single defect, there is a bi-modal distribution
of actual failure intensities around the expected value.
However when we consider multiple defects with the
same λ value, the sum of the failure intensities of the
surviving defects tends to a normal distribution. If all N
defects have the worst case failure rate of 1/T, the
distribution has a mean of N/eT and a standard deviation
of √N/eT. So for large N there is a 50% chance that the
actual failure intensity is less than N/eT and a 98% chance
of being less than (N+2√N)/eT. For other values of λ, the
probability that the observed failure intensity is within the
bound will be much higher. So the actual failure intensity
is also likely to be within the bound in most cases.

3. Derivation of a worst case reliability
function

To extend this theory to derive a worst case reliability
function we can use the same idea of establishing a worst
value for λ. For any defect with failure rate λ the chance
of the defect surviving a test interval T is just:

TeTT λ−=>  ) P( det

and if the defect survived a test and correction interval T,
the chance of operating for a further time t without failure
is just:

tett λ−=>  ) P( fail

On the other hand, the chance of detecting and removing
the defect in time T is:

TeTT λ−−=≤ 1 ) P( det

and in this circumstance, the probability of operating
without failure for a further time t is unity.

Taking these two possible cases together, the chance of
operating without failure for time t after prior usage T is:



tTT eeeTt λλλ −−− ⋅+−= )(1 )| R( (1)

One interesting feature of this equation is that the
reliability function never falls to zero. For non-zero
λ and Τ, the asymptote is (1−e−λT) rather than zero. This is
simply because the defect may no longer be present so
there is a finite chance of operating without failure until t
reaches infinity.

Reducing λ has the effect of moving the asymptote
closer to zero, but R(t) decreases more slowly with t.
Increasing λ has the converse effect; a higher asymptote,
but a more rapid fall towards it.

So there is some worst case value λ for every pair of
T,t values that gives a worst case value of R(t|T) as shown
by the thick line in the figure below.
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Figure 2: Long-term reliability for different λ values

We can differentiate (1) with respect to λ to find the
minimum value for R(t|T). This occurs when:

t
Tt )1ln( +=λ (2)

Note that this is consistent with the original worst case
bound theory since as t tends to zero the worst case value
of λ tends to 1/T.

The worst value of λ defined in equation (2) can be
substituted into (1) to derive a lower bound on the
reliability function R of:
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For the case where t << T, ln(1 + t/T) approximates to t/T,
so the reliability bound equation simplifies to:
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While for the case where t >> T, the exponential term
tends to unity, hence:
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3.1.  Naive exponential reliability model

By comparison, we can construct a naive reliability
function using the maximum expected failure intensity at
T, i.e. θ(T) = 1/eΤ. If we assume the program failure
intensity remains constant with increasing t, the bound to
the reliability function would be exponential, i.e.:

R t T t e T( | ) exp( / . )≥ −

For t << T this approximates to:

R t T
t

eT
( | ) ≥ −1

So the naive exponential model at t=0 has the same initial
slope of –1/eT as the worst case reliability function. The
naive model is more pessimistic than the worst case
reliability function for large values of t, as the worst case
model tends to a reciprocal function rather than an
exponential. This is illustrated in the figure below:
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Figure 3: Naive exponential vs. worst case reliability
function

For values of R(t) greater than 90%, the error in using the
exponential mode is relatively small (as both are close to



the linear slope approximation). For larger values of t, the
error increases. For example, a 50% survival probability
occurs at around t = 2T on the naive exponential model
but at around 3.5T using the worst case reliability model.

The naive model is more pessimistic because it merges
the defect survival and removal cases and uses a mean
failure intensity. As we shall see later in section 3.3, a
high probability of defect-free software can have a major
effect on the worst case reliability function.

3.2.  Extension to N defects

So far we have only considered the reliability function for
a single defect. As we have assumed that the failure
regions of the N defects are disjoint, a detected failure
from one defect does not affect the survival probability of
other defects. So the worst case reliability function for
each defect is the same as equation (3), i.e.
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And since R(t|T) represents the worst case survival
probability for one defect at time t, the worst case
reliability function for N defects at time t is simply the
product of the individual reliability functions, i.e.:
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which for N⋅t << T approximates to:
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So the operating experience T needed to achieve a given
reliability target is bounded by:

))(1( tRe
tN

T
−⋅

⋅≤                        (N⋅t << T) (6)

As an illustration of equation (6), if there is a reliability
requirement for a 90% probability of operating for 1 year
without failure, we require of prior testing and correction
time T under operational conditions of up to:

e
N10

 years

Similarly a more severe requirement of 10-9 failures per
hour would require prior operation and correction for up
to109⋅N/e hours.

Note these are worst case test intervals—the actual test
interval T will be less if the defect failure rates are widely
spread over many orders of magnitude. For example, the
reliability growth extrapolations performed by Butler and
Finelli [4] resulted in test interval predictions of around
T ≈ t/(1-R(t)).

These results for high reliability requirements are
basically the same as those derived using a naive
exponential reliability function. For a lower reliability
requirement over a more extended time interval, we need
to use the full worst case reliability equation for N defects
(equation 4).

3.3.  Fractional defects

For a small safety-related program, the expected value of
N could be less than 1. This becomes even more likely if
we are only concerned with defects that have dangerous
failure modes (e.g. where we exclude defects that have
failsafe behaviour or only affect non-critical functions).

Let us assume that there is a finite probability of a
perfect program, P(N=0), and let us further assume that
only one defect can exist in such a program, i.e.:

P(N=1) = 1– P(N=0)

In these circumstances, the expected number of defects in
the program is a fractional value (Nf) where:

Nf  = 1– P(N=0)

For example, P(N=0) = 0.9 implies that 9 out of 10
implementations will be defect-free and Nf = 0.1. So in 9
out of 10 programs implemented, the failure rate is always
zero. In the 10th program, the defect does exist initially
and there is a worst case failure rate that depends on
usage time. So the expected existence probability after
usage time T is:

(1−P(N=0))⋅e-λT

or equivalently:

Nf ⋅e-λT

and hence the chance of a defect being absent after usage
time T is:

1−Nf ⋅e-λT



When the defect is absent, the probability of executing for
time t without failure is unity for all t. Therefore the
overall reliability function for a given value of λ is:

R(t|T,Nf) = (1−Nf ⋅e-λT) + Nf ⋅e-λT⋅e-λt (7)

Since this only differs by a constant from equation (1) the
maximum occurs at the same point, i.e. when:

t
Tt )1ln( +=λ

And similarly when substituted, the worst case reliability
function is very similar to equation (3), i.e.:

R t T N
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So it is clear that the expected reliability never falls below
1−Nf.   

3.4.  Dealing with uncertainty in N

More generally, if there is uncertainty about our prior
belief in N, we can characterise this as a probability
distribution, P(N=n). In this case the expected value of
the reliability function is:

∑ ⋅== nTtRnNPNPTtR )|()())(,|(

and the expected value of N is:

∑ ⋅== nnNPN )(

Using Jensen’s Inequality [5], it can be shown that for any
distribution of N:

Nn TtRTtRnNP )|()|()( ≤⋅=∑
and hence it is conservative to use the expected value for
N in equation (4). So for any distribution of values of N,
the worst case reliability function can be conservatively
approximated by:
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And for tN ⋅ <<T, equation (9) can be conservatively
approximated to:
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while for t >> T, the equation (9) tends to:
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In addition, for N <1, it is always the case that for a
distribution P(N):

NNP −≥= 1)0(

and since the expected value of R(t) > P(N=0) for all t, we
can also conservatively bound the worst case reliability
function by:

NNPTtR −> 1))(,|(          ( N  < 1) (12)

These results show that is not necessary to define a
precise distribution for N, a worst case reliability function
using the expected value of N will be conservative with
respect to the “proper” worst case reliability function
derived using a distribution for N.

3.5.  Imperfect diagnosis

The foregoing analysis assumes perfect detection and
correction of software defects. This may not occur in
practice. We can represent imperfect detection with an
additional parameter d that represents the number of
failures that occur before the defect is corrected. In these
circumstances, the detection rate is λ/d, so the probability
of a defect surviving for a time T is:

P(Tfail > T) = dTe /λ−

While the probability of subsequent failure free operation
for time t if a defect is present is unchanged, i.e.

P(tfail> t) = te λ−

The equations are formally identical to the earlier analysis
except that T is replaced by T/d. It follows that equations
2 to 12 can be generalized by replacing T by T/d. The
maximum expected failure intensity at t=0 would
therefore be d/eT, and for N defects the value is Nd/eT.
This is consistent with the result derived in [2] for
imperfect diagnosis.



This correction for imperfect detection can be applied
to other reliability models, so imperfect correction is not
considered when comparing the worst case reliability
function against alternative models in the section below.

4. Comparison with alternative models

The worst case reliability function can be compared with
the reliability function derived by Littlewood and Strigini
[7] where, if zero failures are observed in time T0, the
reliability function is:

R(t|T0) = T0/(T0+t) (13)

This reliability function is derived using a Bayesian
analysis where there is a prior belief that all failure rates
are equally likely, and this prior belief is modified by
failure free testing. We will term this the “black-box
Bayesian” reliability function as no effort is made to
represent the actual distribution of failure rates.

By contrast, in our model we always assume each
defect has a worst failure rate, and that we know how
many defects exist in the software prior to testing .

Another key difference between the models is that our
model can be applied regardless of the failures observed
in time T while the To in the black-box Bayesian model
only relates to the last failure free interval. In practice
however, an estimate of N =0.1 residual defects would
have to be revised in the light of a failure (since we would
then know that N was at least one, and possibly more). So
in practice, a worst case reliability function with N  < 1
would require failure free working during the test interval
T, i.e. T ≡ T0 for N  < 1.

If there are no failures during T, the model parameters
are identical (i.e. T in our model is the same as T0 in the
black-box Bayesian model) so it is possible to make valid
comparisons between the two models.

Some sample results from the two models are shown in
figure 4 below.
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Figure 4.  Worst case reliability predictions for different
estimates of N vs. black-box Bayesian model

It is interesting to note that for N ≤ 2, the worst case
reliability function yields a higher reliability prediction
than the black-box Bayesian model for most values of t.
For larger values of N (e.g. N=5), R(t) is worse than the
Bayesian model, but it is should be noted that for N≥1, the
results might not be directly comparable as T covers the
whole test period, while the Bayesian model T0 only
relates to the last failure free interval. Some key values
from these curves are summarised in the table below.

Table 1.  Reliability vs. time for different models

R(t)Model
t=0.1T t=T t=10T T=100T

Nf = 0.1 0.996 0.975 0.928 0.905
Nf = 0.5 0.982 0.875 0.642 0.527
N = 1 0.965 0.75 0.265 0.55
N = 2 0.931 0.562 0.081 0.003
N = 5 0.837 0.237 0.002 4.8×10-7

Bayesian 0.909 0.50 0.091 0.010

A comparison of equations (11) and (13) shows that the
worst case and black-box Bayesian models tend towards
the same asymptotic value for the case where N=1 and
t>>T. However it can be seen in the figure that the
convergence is fairly slow. The Bayesian model predicts
that there is a 50% chance of surviving another interval of
T (which seems intuitively reasonable) while the “worst
case” reliability function predicts a 75% survival
probability.

The difference is more marked if we estimate there is
only a 0.1 chance of a defect (Nf=0.1). In this case the l
probability is much greater, i.e. 97.5%. For larger values
of t the difference is even greater—at t=100T the
reliability bound is around 90% for the Nf=0.1 model, but



a reliability of only 1% is predicted by the black-box
Bayesian model.

This arises because the Nf = 0.1 model has a worst case
survival probability R(t) which is asymptotic to 0.9, while
the Bayesian model (and all worst cast functions where N
≥ 1) are asymptotic to zero. This means there are very
significant gains in predicted reliability if a low
probability of a defect can be justified.

The “fractional defect” variant of the worst case
reliability function can also be compared with the
“probability of perfection” approach used by Bertolino
and Strigini [1]. While [1] does not directly derive a
reliability function, it shows that the probability of failure
over any period t is always less than 1−Pperf  In
conventional reliability function terms, the probability of
surviving any period t is therefore: R(t) > Pperf.

In our worst case reliability function model for a
fractional defect, equation (12) shows that R(t) > 1–Nf. for
all t. Since a fractional defect Nf is equivalent to 1–Pperf,
the asymptotes for both models are similar (but, in the
Bayesian approach used in [1], Pperf can increase with
increasing failure free operation).

It should also be noted that the worst case reliability
function is consistent with the earlier worst case bound
theory [2]. The initial slope of the reliability curve at t=0
gives the instantaneous failure intensity θ(T), and the
value of N/eT is consistent with the original worst case
bound theory.

5. Discussion

 We have shown the worst case bound theory is consistent
with the earlier worst case bound result [2] and is
asymptotic to the reliability predictions derived in [1] and
[7] in cases where the underlying assumptions are
comparable. The main question to ask is whether such a
worst case reliability function has any practical
advantages over Bayesian methods for estimating
reliability. The features of the two approaches are
summarised below.

Table 2.  Comparison of models

 "Worst case" reliability  Black-box Bayesian
 prediction before
operation

 inference from operation

 postulates perfect failure
detection, or adjustment
for imperfect detection

 exactly the same

 postulates perfect fault
fixing

 postulates that one does
not change the program at
all

 requires prior beliefs
about N

 requires prior beliefs
about failure rate

 "Worst case" reliability  Black-box Bayesian
 given valid prior beliefs
about N, there are some
approximations which
guarantee pessimism in
the predictions

 checking for pessimism is
not always trivial

 
 One merit of the worst case bound approach is that there
is no necessity for prior beliefs about the distribution of
possible failure rates, which is required in a Bayesian
analysis. On the other hand, it is necessary to have some
means for estimating N so, from a Bayesian perspective,
the estimate for N is an alternative form of prior belief.
There are a variety of methods for estimating N (e.g.
[3,6,8,9]). The main limitation is that is difficult to get
assurance that the prior estimate of N (or distribution of
N) is close to the actual number of defects present in the
software. This is particularly difficult when the expected
value if N is predicted to be less than one as the
uncertainties in the actual value become greater.
 It should also be noted that, the expected value of N
can be reduced if we are only concerned with a subset of
the residual defects. For example, from a safety
perspective, we are only interested in the number of
hazardous defects (i.e. those that cause dangerous
failures). In some continuous time safety-related systems,
quite low percentages of hazardous defects have been
observed (e.g. 3 to 10%). If this were the case then even
with a prior estimate of 10 residual defects, the number of
hazardous defects, N could be quite low (possibly less
than one) so our model might still be less pessimistic than
the black-box Bayesian model.
 The instantaneous failure intensity at time T, θ(T) can
be derived from the initial slope of the reliability curve
and the failure intensity predictions at t=0 for the two
models are shown on the table below.

Table 3. Comparison of back box Bayesian and "worst
case" failure intensity predictions at t=0

 Model  θ(T)
 black-box Bayesian  1/T0

 Worst case reliability function  N/eT
 
 So the two models yield the same estimate when N =
eT/T0. So for N < 3, the worst case bound theory gives a
less pessimistic prediction. If failures are observed in the
test interval (i.e. T0 < T), this would increase the
difference between the two predictions (although this is
based on an assumption of perfect correction of defects
which may not be plausible).
 These results could have been obtained using the
original worst case bound theory [2[. However if
requirements are expressed in terms of a lower probability



of survival over a long time period we should use the full
worst case reliability function (equation 4)..
 The difference between the reliability functions at
lower survival probabilities can be illustrated by
calculating the test time required for a 50% chance of
surviving 1000 time units, as shown in the following
table.

Table 4. Comparison of tests needed for a 50% chance of
execution without failure up to t=1000

 Model  T for a 50% probability of
surviving time t =1000 in

operation
 Worst case (Nf=0.1)  0
 Worst case (Nf=0.5)  0
 Worst case (N=1)  298
 Worst case (N=2)  821
 Black-box Bayesian  1000
 Worst case (N=5)  2437

 
 This indicates that if N is large, it would be better to base
the reliability estimation on the observed failure free
interval T0 using the black-box Bayesian method. It
should be noted however that the test interval T predicted
by the worst case model, e.g. 2437 for 5 defects, may still
be needed to achieve the desired reliability goal if there
are residual defects in the software.
 It can be seen that potentially the greatest gain would
be when we believe there is a finite chance that the
program is defect free (or at least free of dangerous
defects). For example if our prior belief is that P(N=0) >
0.5, no tests are strictly necessary for a 50% survival
probability. Clearly this is very sensitive to our belief
about the existence of a dangerous defect—we are making
a strong additional assumption that 1 out of 2 programs
produced would be defect free (i.e. would never fail on
demand regardless of the amount of testing). Given the
uncertainties in the value of N it might be desirable to
always test for the N=1 case even if we have a strong
belief that N could be zero (i.e. the program is perfect).

As noted by other researchers (e.g. [1, 10]) the concept
of “probability of perfection” can be used to “scale-up”
reliability estimate made by testing. As with the other
methods, the observation of a failure refutes the premise
that the program is defect-free. In our method there is no
standard way of updating the prior estimate for N if
testing shows our prior estimate is invalid (i.e. when the
number of defects detected exceeds the predicted value).

If we could employ Bayesian methods to update the
prior distribution for N based on defects are detected
during testing (and perhaps the expected distribution of
failure rates), we would be less vulnerable to errors in the
initial estimate for N. This is an area that merits further
research

6. Conclusions and further work

We have derived a worst case reliability function that is
relatively easy to apply and results in less pessimistic
reliability predictions than our earlier theory [2] and can
be less pessimistic than the black-box Bayesian reliability
equation [7] if the predicted number of defects, N, is
small.

We also show that for the case where the expected
value of N<1, i.e. where there is a finite chance that there
are no dangerous defects, there can be dramatic increases
in predicted reliability. This “fractional defect” parameter
is closely related to the “probability of perfection”
parameter used [1], and both result in reliabilities that are
asymptotic to a non-zero value.

Strictly speaking we do not need to believe in
complete perfection if we are only concerned with
dangerous defects—we only need to believe it is possible
that there are no dangerous defects, i.e. the expected
number of dangerous defects is less than unity.

While such “probability of perfection” scaling is an
attractive concept, especially for the ultra-high reliability
area, it is difficult to construct convincing arguments to
justify that belief. This could be a fruitful area for further
research.

Another limitation of the worst case model is that the
estimate of N is fixed prior throughout testing. Clearly the
predicted worst case bound is invalid if more than N
defects are detected in practice. It would therefore be
fruitful to generalise the approach so that a prior
distribution of N values is updated in the light of
operational experience.
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