25 research outputs found

    Design and Development of a Compact Magnetic Bearing Momentum Wheel for Micro and Small Satellites

    Get PDF
    Reaction and momentum wheels have become standard equipment for three-axis attitude stabilisation of conventional satellite classes as used e.g. for telecommunication and remote sensing missions. Owing to very compact mechanical designs and highly integrated electronics, wheels are now also more and more interesting for small satellites up to 100…200 kg with increasingly demanding requirements on attitude control. Wheels suitable for small satellites have a typical momentum capacity up to approximately 0.4 Nms, and masses up to about 2 kg. All existing miniature wheels known to the authors are relying on ball bearings for rotor suspension, which may limit the lifetime of a particular mission or introduce undesired levels of micro-vibrations. Magnetic bearings have the potential to overcome those disadvantages. However, the design of a sufficiently small magnetic bearing with all the necessary components and sub-assemblies involves a number of technical challenges, which are discussed in detail. The paper focuses on the magnetic bearing design process, using magnetic field CAE tools, and the overall wheel design. A prototype of a compact magnetic bearing wheel currently under construction is presented. Moreover, control aspects of the magnetic bearing and the drive motor design will be described and an outlook for further improvements and potential future developments will be given

    Seagrass Health Modeling and Prediction with NASA Science Data

    Get PDF
    Previous research has demonstrated that MODIS data products can be used as inputs into the seagrass productivity model developed by Fong and Harwell (1994). To further explore this use to predict seagrass productivity, Moderate Resolution Imaging Spectroradiometer (MODIS) custom data products, including Sea Surface Temperature, Light Attenuation, and Chlorophyll-a have been created for use as model parameter inputs. Coastal researchers can use these MODIS data products and model results in conjunction with historical and daily assessment of seagrass conditions to assess variables that affect the productivity of the seagrass beds. Current monitoring practices involve manual data collection (typically on a quarterly basis) and the data is often insufficient for evaluating the dynamic events that influence seagrass beds. As part of a NASA-funded research grant, the University of Mississippi, is working with researchers at NASA and Radiance Technologies to develop methods to deliver MODIS derived model output for the northern Gulf of Mexico (GOM) to coastal and environmental managers. The result of the project will be a data portal that provides access to MODIS data products and model results from the past 5 years, that includes an automated process to incorporate new data as it becomes available. All model parameters and final output will be available through the use National Oceanic and Atmospheric Administration?s (NOAA) Environmental Research Divisions Data Access Program (ERDDAP) tools as well as viewable using Thematic Realtime Environmental Distributed Data Services (THREDDS) and the Integrated Data Viewer (IDV). These tools provide the ability to create raster-based time sequences of model output and parameters as well as create graphs of model parameters versus time. This tool will provide researchers and coastal managers the ability to analyze the model inputs so that the factors influencing a change in seagrass productivity can be determined over time

    Ionospheric corrections tailored to the Galileo High Accuracy Service

    Get PDF
    The Galileo High Accuracy Service (HAS) is a new capability of the European Global Navigation Satellite System that is currently under development. The Galileo HAS will start providing satellite orbit and clock corrections (i.e. non-dispersive effects) and soon it will also correct dispersive effects such as inter-frequency biases and, in its full capability, ionospheric delay. We analyse here an ionospheric correction system based on the fast precise point positioning (Fast-PPP) and its potential application to the Galileo HAS. The aim of this contribution is to present some recent upgrades to the Fast-PPP model, with the emphasis on the model geometry and the data used. The results show the benefits of integer ambiguity resolution to obtain unambiguous carrier phase measurements as input to compute the Fast-PPP model. Seven permanent stations are used to assess the errors of the Fast-PPP ionospheric corrections, with baseline distances ranging from 100 to 1000 km from the reference receivers used to compute the Fast-PPP corrections. The 99% of the GPS and Galileo errors in well-sounded areas and in mid-latitude stations are below one total electron content unit. In addition, large errors are bounded by the error prediction of the Fast-PPP model, in the form of the variance of the estimation of the ionospheric corrections. Therefore, we conclude that Fast-PPP is able to provide ionospheric corrections with the required ionospheric accuracy, and realistic confidence bounds, for the Galileo HAS.Open Access funding provided thanks to the CRUECSIC agreement with Springer Nature. The present work was supported in part by the European Space Agency contract IONO4HAS 4000128823/19/NL/AS, by the project RTI2018-094295-B-I00 funded by the MCIN/AEI 10.13039/501100011033 which is co-founded by the FEDER programme and by the Horizon 2020 Marie Skłodowska-Curie Individual Global Fellowship 797461 NAVSCIN.Peer ReviewedPostprint (published version

    Impaired O2 unloading from stored blood results in diffusion-limited O2 release at tissues: evidence from human kidneys

    Get PDF
    The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen-handling. Whilst the oxygen-carrying capacity of blood is increased with transfusion, previous studies have shown that stored blood undergoes kinetic attrition of oxygen release, which may compromise overall oxygen delivery to tissues, i.e. transport became diffusion-limited. We sought evidence for diffusion-limited oxygen release in viable human kidneys normothermically perfused with stored blood. In a cohort of kidneys that went on to be transplanted, ex-vivo renal respiration correlated inversely with the time-constant of oxygen-unloading from RBCs used for perfusion. Furthermore, the renal respiratory rate did not correlate with arterial O2 delivery unless this factored the rate of oxygen-release from RBCs, as expected from diffusion-limited transport. In kidneys deemed unsuitable for transplantation, perfusion was alternated between stored and rejuvenated RBCs of the same donation to control oxygen-unloading without intervening ischemia and holding all non-RBC parameters constant. Rejuvenated oxygen-unloading kinetics reversibly improved the kidney’s oxygen diffusion capacity and increased cortical oxygen partial pressure by 60%. Thus, oxygen delivery to tissues can become diffusion-limited during perfusion with stored blood, which has implications in scenarios such as ex-vivo organ perfusion, major hemorrhage, and pediatric transfusion

    Development of an Interoperable GNSS Space Service Volume

    Get PDF
    Global Navigation Satellite Systems (GNSS), now routinely used for navigation by spacecraft in low Earth orbit, are being used increasingly by high-altitude users in geostationary orbit and high eccentric orbits as well, near to and above the GNSS constellations themselves. Available signals in these regimes are very limited for any single GNSS constellation due to the weak signal strength, the blockage of signals by the Earth, and the limited number of satellites. But with the recent development of multiple GNSS constellations and ongoing upgrades to existing constellations, multi-GNSS signal availability is set to improve significantly. This will only be achieved if these signals are designed to be interoperable and are clearly documented and supported. All satellite navigation constellation providers are working together through the United Nations International Committee on GNSS (ICG) to establish an interoperable multi-GNSS Space Service Volume (SSV) for the benefit of all GNSS space users. The multi-GNSS SSV represents a common set of baseline definitions and assumptions for high-altitude service in space, documents the service provided by each constellation, and provides a framework for continued support for space users. This paper provides an overview of the GNSS SSV concept, development, status, and achievements within the ICG. It describes the final adopted definition and performance characteristics of the GNSS SSV, as well as the numerous benefits and use cases enabled by this development. Extensive technical analysis was also performed to illustrate these benefits in terms of signal availability, both on a global scale, and for multiple distinct mission types. This analysis is summarized here and presented in detail in a companion paper by Enderle, et al

    Partnerships based on Joint Ownership

    No full text
    In a unifying framework generalizing established theories we characterize under which conditions Joint Ownership of assets creates the best cooperation incentives in a partnership. We endogenise renegotiation costs and assume that they weakly increase with additional assets. A salient sufficient condition for optimal cooperation incentives among patient partners is if Joint Ownership is a Strict Coasian Institution for which transaction costs impede an efficient asset reallocation after a breakdown. In contrast to Halonen (2002) the logic behind our results is that Joint Ownership maximizes the value of the relationship and the costs of renegotiating ownership after a broken relationship

    The challenging diagnosis of cronkhite-canada syndrome in the upper gastrointestinal tract: A series of 7 cases with clinical follow-up

    No full text
    Cronkhite-Canada syndrome is a rare protein-losing enteropathy, classically characterized by ectodermal changes and gastrointestinal polyposis. The etiology remains obscure but immune dysregulation may be important. The diagnosis of Cronkhite-Canada syndrome in the upper gastrointestinal tract is challenging, frequently resulting in delayed patient management. In this study, we described the initial clinical presentations, upper gastrointestinal endoscopic appearances, clinical follow-up, and histologic diagnoses in 7 patients who were subsequently diagnosed with Cronkhite-Canada syndrome. Histology slides were reviewed, and IgG4 immunohistochemical analysis was performed. The most common initial endoscopic impressions were antral malignancy and gastric infection, but gastroduodenal polyposis was not described. On histologic review, the main findings in the gastric mucosa were a prominent mucosal edema, a mixed inflammatory infiltrate rich in eosinophils, and architectural changes with gland dilatation and withering. In the duodenal mucosa, total or subtotal duodenal villous atrophy, inflammation, crypt distortion, and increased apoptotic bodies were the most common features. Three patients died of the disease, and 4 patients were asymptomatic at a mean follow-up of 3.5 years. No intestinal malignancy had been diagnosed. In 2 patients foci of dysplasia in colonic polyps were identified. In only 1 patient, a significant increase in IgG4-positive plasma cells was observed in a colonic polyp. In summary, we found that patients with Cronkhite-Canada syndrome have histologic features commonly found in other immune disorders of the gastrointestinal tract that may help in establishing the diagnosis and further supports the hypothesis that Cronkhite-Canada syndrome may represent an immune dysregulation syndrome, different from IgG4-related disease. Copyrigh
    corecore