7 research outputs found

    Recombinant human interleukin-12 is the second example of a C-mannosylated protein

    Get PDF
    The β-chain of human interleukin 12 (IL-12) contains at position 319-322, the sequence Trp-x-x-Trp. In human RNase 2 this is the recognition motif for a new, recently discovered posttranslational modification, i.e., the C-glycosidic attachment of a mannosyl residue to the side chain of tryptophan. Analysis of C-terminal peptides of recombinant IL-12 (rHuIL-12) by mass spectrometry and NMR spectroscopy revealed that Trp-319β is (partially) C-mannosylated. This finding was extended by in vitro mannosylation experiments, using a synthetic peptide derived from the same region of the protein as an acceptor. Furthermore, human B-lymphoblastoid cells, which secrete IL-12, were found to contain an enzyme that carries out the C-mannosylation reaction. This shows that nonrecombinant IL-12 is potentially C-mannosylated as well. This is only the second report on a C-mannosylated protein. However, the occurrence of the C-mannosyltransferase activity in a variety of cells and tissues, and the presence of the recognition motif in many proteins indicate that more C-mannosylated proteins may be foun

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe

    How to Computationally Stack the Deck for Hit-to-Lead Generation: In Silico Molecular Interaction Energy Profiling for De Novo siRNA Guide Strand Surrogate Selection

    No full text
    The Argonaute-2 protein is part of the RNA-induced silencing complex (RISC) and anchors the guide strand of the small interfering RNA (siRNA). The 3' end of the RNA contains two unpaired nucleotides (3'-overhang) that interact with the PAZ (PIWI-Argonaute-Zwille) domain of the protein. Theoretical and experimental evidence points towards a direct connection between the PAZ/3'-overhang binding affinity and siRNA's potency and specificity. Among the challenges to overcome when deploying siRNA molecules as therapeutics are their ready degradation under physiological conditions, and off-target effects. It has been demonstrated that nuclease resistance can be improved via replacement of the dinucleotide overhang by small molecules which retain the interactions of the RNA guide strand with the PAZ domain. Most commonly, nucleotide analogues are used to substitute the siRNA overhang. However, in this study we adopt a de novo approach to its modification. The X-ray structure of human Argonaute-2 PAZ domain served to perform virtual screening and molecular interaction energy profiling (i.e., decomposition of the force field calculated protein-ligand interaction energies) of tailored-to-purpose fragment libraries. The binding of fragments to the PAZ domain was validated experimentally by NMR spectroscopy. The in silico guided protocol led to the efficient discovery of a number of PAZ domain ligands with affinities comparable to that of a reference dinucleotide (UpU, Kd = 33 µM). Originally starting from a generic fragment library, hits progress from 930 µM down to 14 µM within 3 iterations for the fragments selected via in silico molecular interaction energy profiling from a bespoke library. These dinucleotide siRNA guide strand surrogates represent potential new siRNA-based therapeutics (when attached to siRNA to form bioconjugates) featuring improved efficacy, specificity, stability and cellular uptake. This project yielded a portfolio of 7 patent applications, two of which have been granted to date

    Time efficient detection of protein-ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment

    No full text
    The identification of compounds that bind to a protein of interest is of central importance in contemporary drug research. For screening of compound libraries, NMR techniques are widely used, in particular the Water-Ligand Observed via Gradient SpectroscopY (WaterLOGSY) experiment. Here we present an optimized experiment, the polarization optimized WaterLOGSY (PO-WaterLOGSY). Based on a water flip-back strategy in conjunction with model calculations and numerical simulations, the PO-WaterLOGSY is optimized for water polarization recovery. Compared to a standard setup with the conventional WaterLOGSY, time consuming relaxation delays have been considerably shortened and can even be omitted through this approach. Furthermore, the robustness of the pulse sequence in an industrial setup was increased by the use of hard pulse trains for selective water excitation and water suppression. The PO-WaterLOGSY thus yields increased time efficiency by factor of 3-5 when compared with previously published schemes. These time savings have a substantial impact in drug discovery, since significantly larger compound libraries can be tested in screening campaigns

    Interaction of epothilone B (patupilone) with microtubules as detected by two-domesional Solid-state NMR

    No full text
    Microtubule ligands such as taxanes and epothilones have emerged as broadly applied chemotherapeutic agents. Epothilones are known to induce the polymerization of ab-tubulin dimers into microtubules leading to apoptosis of cancer cells. It appears that epothilone B (patupilone) is more potent cytotoxic agent against multi-resistant tumor cells than epothilone A and taxanes. These observations invoke a strong interest in understanding the functional mechanism for the interaction of patupilone with a,b-tubulin to deduce an optimized anticancer drug. The recent electron crystallography studies on Epothilone A bound to a,b-tubulin in zinc-stabilized sheets and solution NMR studies of epothilone A in equilibrium with a,b-tubulin heterodimers lead to controversial binding models. Here, we have used solid-state NMR techniques with the aim to understand the binding mode of patupilone to intact microtubules. We obtained high resolution ssNMR spectra of patupilone bound to microtubules and identified atomic positions of the drug that undergo clear changes of chemical shift upon binding
    corecore