62 research outputs found

    TGF-B induced protein IG-H3 is essential for the growth of human liver metastases

    Full text link
    Introduction : Transforming growth factor-beta-induced protein ig-h3 (TGFBI) is extracellular matrix component known to be important for cell-collagen interaction. We and others have reported elevated expression of TGFBI in sev- eral human cancers, where its role remains controversial. Aim Current study aims at clarifying the function of TGFBI to date. Methods &Results : CRC-LM and in liver metastases originating from breast, lung and pancreatic tumors. We have next focused on func- tional aspects and have silenced TGFBI expression in SW1222 human colorectal carcinoma cells. The suppression of TGFBI protein led to a marked decrease in cell migration (-70%) and proliferation (-30%) in vitro. To study the effects in vivo we have developed a novel animal model of colorectal carcinoma based on chicken chorioallantoic membrane (CAM) that mimics human CRC-LM. TGFBI silencing resulted in 50% reduction of tumor volume in the CAM tumor model. Notably, the tumors displayed a marked inhibition of vascularization, suggesting an additional anti-angiogenic effect. Indeed, SW1222 cells silenced for TGFBI expression secreted lower levels of VEGFA in vitro. Finally, we have investigated if TGFBI can be used as systemically reachable target for antibody-drug delivery. For this purpose we have The in vivo data demonstrated that TGFBI is an accessible tumor target. Conclusions : Taken together, the present study shows that TGFBI is essential for promoting the development of CRC- LM and therefore represents a promising target for designing novel therapeutic approaches

    Sprouty2 loss‐induced IL6 drives castration‐resistant prostate cancer through scavenger receptor B1

    Get PDF
    Metastatic castration‐resistant prostate cancer (mCRPC) is a lethal form of treatment‐resistant prostate cancer and poses significant therapeutic challenges. Deregulated receptor tyrosine kinase (RTK) signalling mediated by loss of tumour suppressor Sprouty2 (SPRY2) is associated with treatment resistance. Using pre‐clinical human and murine mCRPC models, we show that SPRY2 deficiency leads to an androgen self‐sufficient form of CRPC. Mechanistically, HER2‐IL6 signalling axis enhances the expression of androgen biosynthetic enzyme HSD3B1 and increases SRB1‐mediated cholesterol uptake in SPRY2‐deficient tumours. Systemically, IL6 elevated the levels of circulating cholesterol by inducing host adipose lipolysis and hepatic cholesterol biosynthesis. SPRY2‐deficient CRPC is dependent on cholesterol bioavailability and SRB1‐mediated tumoral cholesterol uptake for androgen biosynthesis. Importantly, treatment with ITX5061, a clinically safe SRB1 antagonist, decreased treatment resistance. Our results indicate that cholesterol transport blockade may be effective against SPRY2‐deficient CRPC

    Analysis of Prostate Cancer Tumor Microenvironment Identifies Reduced Stromal CD4 Effector T-cell Infiltration in Tumors with Pelvic Nodal Metastasis.

    Get PDF
    BACKGROUND: Pelvic nodal metastasis in prostate cancer impacts patient outcome negatively. OBJECTIVE: To explore tumor-infiltrating immune cells as a potential predictive tool for regional lymph node (LN) metastasis. DESIGN SETTING AND PARTICIPANTS: We applied multiplex immunofluorescence and targeted transcriptomic analysis on 94 radical prostatectomy specimens in patients with (LN+) or without (LN-) pelvic nodal metastases. Both intraepithelial and stromal infiltrations of immune cells and differentially expressed genes (mRNA and protein levels) were correlated with the nodal status. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The identified CD4 effector cell signature of nodal metastasis was validated in a comparable independent patient cohort of 184 informative cases. Patient outcome analysis and decision curve analysis were performed with the CD4 effector cell density-based signature. RESULTS AND LIMITATIONS: In the discovery cohort, both tumor epithelium and stroma from patients with nodal metastasis had significantly lower infiltration of multiple immune cell types, with stromal CD4 effector cells highlighted as the top candidate marker. Targeted gene expression analysis and confirmatory protein analysis revealed key alteration of extracellular matrix components in tumors with nodal metastasis. Of note, stromal CD4 immune cell density was a significant independent predictor of LN metastasis (odds ratio [OR] = 0.15, p = 0.004), and was further validated as a significant predictor of nodal metastasis in the validation cohort (OR = 0.26, p < 0.001). CONCLUSIONS: Decreased T-cell infiltrates in the primary tumor (particularly CD4 effector cells) are associated with a higher risk of LN metastasis. Future evaluation of CD4-based assays on prostate cancer diagnostic biopsy materials may improve selection of at-risk patients for the treatment of LN metastasis. PATIENT SUMMARY: In this report, we found that cancer showing evidence of cancer metastasis to the lymph nodes tends to have less immune cells present within the tumor. We conclude that the extent of immune cells present within a prostate tumor can help doctors determine the most appropriate treatment plan for individual patients

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Imaging Guided Proteomics Unveils Heterogeneity in Colorectal Carcinoma Liver Metastases – Implications for Targeted Therapies

    Full text link
    Patients suffering from liver metastases are diagnosed late and have a poor outcome. Targeted therapies are promising treatment options, however the malignant lesions are heterogeneous in nature offering niches for cancer cells to survive and regrow. A rational strategy is needed to select targetable antigens that would overcome this intra-tumoral heterogeneity. MALDI-MS imaging is an emerging tool to study the distribution of biomolecules in tissue samples and is a good base for defining the regions of interest (ROI) that deserve further in-depth analysis. We employed MALDI-MS imaging of colorectal liver metastasis to identify ROI and guide the proteomic analysis for a more in-depth picture of modulated proteins. The focus was laid on cell membrane and extracellular proteins as these have enhanced potential to be used for targeted therapy and clinical imaging applications. Four defined ROI were further analyzed employing 2D-Nano-UPLC-MSe methodology. Over 1500 unique proteins were statistically divided into different patterns of expression, generating a quantitative picture of the proteome heterogeneity in liver metastases. The results offered insight into novel targets but also antigens against which the antibodies are already involved in cancer clinical trials. Following immunohistochemistry based validation experiments, certain proteins demonstrated the potential to homogeneously cover the metastatic lesion and become better targets. Two such antigens, LTBP2 and TGFBI were selected for in vivo functional/ tumor targeting studies in colorectal carcinoma animal model. Importantly, we were able to demonstrate the “targetable” nature of these antigens for homing antibodies injected i.v. Functionally, TGFBI showed an additional potential to target the tumor via it’s ability to affect migration and growth of cancer cells, hence taking the influence on the process of tumorigenesis. In conclusion, liver metastases display a significant heterogeneity in terms of targetable biomarkers and these findings should flow in the future development of targeted therapies aiming to cure the patient
    corecore