4,717 research outputs found

    An ellipsometric study of protein adsorption at the saliva-air interface

    Get PDF
    At the liquid-air interface of human saliva a protein layer is adsorbed. From ellipsometric measurements it was found that the thickness of the surface layer ranged from 400 to 3600 Å and the amount of protein material adsorbed was 9–340 mg/m2. Based on the concentration of protein in the layer the samples could be classified into two groups: a low concentration (ca. 0.15 g/ml) and a high concentration (0.7–1.1 g/ml). In the low concentration group the surface layers appeared to be thin (500–600 Å) while those in the high concentration group appeared to be much thicker (1000–3500 Å). A correlation between the bulk pH and the thickness of the surface layer could be established

    Rheological properties of human saliva

    Get PDF
    From measurements with a Couette-type viscometer provided with a guard ring it was shown that at the saliva-air interface a protein layer is adsorbed. Measurements of the surface shear modulus of this layer on saliva of 7 healthy subjects were performed at a frequency of about 70 Hz and a temperature of 25 °C. For a surface age of about 1.5 h the surface shear modulus and the surface viscosity were in the order of 1 Nm−1 and 10−3 Nm−1 s, respectively. From ellipsometric measurements it was found that the thickness of the protein layer was approx. 100nm and, using this value, it could be concluded that the shear modulus and the dynamic viscosity were in the order of 107 Pa and 104 Pa s, respectively. The layer appeared to be fragile. Even shear deformation amplitudes of 4 × 10−5 are too high to assure linearity. The complex viscosity (η = ηâ€Č − iηâ€Čâ€Č) of the bulk liquid of human submandibular saliva below the absorbed layer was measured in the frequency range 70 Hz–200 kHz with 3 torsional resonators, each for a different frequency, and a Ni-tube resonator. It was concluded, that the real part of the complex viscosity (ηâ€Č) decreases from 1.1 mPa s at 70 Hz to a value of 0.95 mPa s at high frequencies. Except at the lowest frequency (70 Hz), the value of ηâ€Čâ€Č was too small to be detected

    Transmission Power Measurements for Wireless Sensor Nodes and their Relationship to the Battery Level

    Get PDF
    In this work we focus on the new generation EYESIFXv2 [1] wireless sensor nodes by carrying out experimental measurements on power related quantities. In particular, our aim is to characterize the relationship between the level of the battery and the transmission power radiated by the node. The present results point out the non linear and non trivial effects due to the output potentiometer which can be used to tune the transmission power. It shall be observed that a thorough study of how battery and/or potentiometer settings translate to actual transmitted power levels is crucial to e.g. design correct power control algorithms, which can effectively operate under any operational condition of the wireless sensor device

    Adsorption and diffusion of CO<sub>2</sub> in CPO-27–Ni beads

    Get PDF
    The present work involves the scale-up and characterization of CPO-27–Ni metal organic framework using a range of experimental techniques aimed at determining equilibrium and kinetic parameters to assess its potential for post-combustion carbon capture. CPO-27–Ni was prepared from its precursors by molecular gastronomy methods in kilogram scale. Adsorption of isotherms of pure CO2 and N2 were obtained for diferent temperatures on these beads, using a volumetric apparatus and the isotherms were ftted to a dual-site Langmuir model. A series of experiments were then carried out in the volumetric apparatus by dosing a known volume of CO2 and the pressure was monitored with time. The difusional time constants were then extracted by ftting the series of curves to an isothermal difusion model. From the time constants, the values of the difusivities were obtained and compared with the values obtained from frst principles correlations, which employed the pore size, and the porosity values from independent mercury porosimetry experiments. The results from the analysis showed that the transport of CO2 in the beads was well described by a combination of Knudsen and viscous difusion mechanisms. Experiments were also carried out using a zero-length column (ZLC) apparatus by preparing a 10% CO2–He and 10% CO2– N2 mixture. The analysis of the ZLC curves showed that the two diferent carrier gases had an efect of the long-time slope, indicating the presence of a macropore-controlled difusion mechanism.publishedVersio

    Distributed Branching Bisimulation Minimization by Inductive Signatures

    Get PDF
    We present a new distributed algorithm for state space minimization modulo branching bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process and the signatures have been optimized to exploit the fact that the input graph contains no tau-loops. The optimization in the refinement process is meant to reduce both the number of iterations needed and the memory requirements. In the former case we cannot prove that there is an improvement, but our experiments show that in many cases the number of iterations is smaller. In the latter case, we can prove that the worst case memory use of the new algorithm is linear in the size of the state space, whereas the old algorithm has a quadratic upper bound. The paper includes a proof of correctness of the new algorithm and the results of a number of experiments that compare the performance of the old and the new algorithms

    Universality in metallic nanocohesion: a quantum chaos approach

    Full text link
    Convergent semiclassical trace formulae for the density of states and cohesive force of a narrow constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived. It is shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in its cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum parameter describing the crossover from chaotic to integrable motion, and is of order 1 nano-Newton, in agreement with recent experiments. Interestingly, quantum tunneling is shown to be described quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is unchanged

    EDGAR 2.0: an enhanced software platform for comparative gene content analyses.

    Get PDF
    The rapidly increasing availability of microbial genome sequences has led to a growing demand for bioinformatics software tools that support the functional analysis based on the comparison of closely related genomes. By utilizing comparative approaches on gene level it is possible to gain insights into the core genes which represent the set of shared features for a set of organisms under study. Vice versa singleton genes can be identified to elucidate the specific properties of an individual genome. Since initial publication, the EDGAR platform has become one of the most established software tools in the field of comparative genomics. Over the last years, the software has been continuously improved and a large number of new analysis features have been added. For the new version, EDGAR 2.0, the gene orthology estimation approach was newly designed and completely re-implemented. Among other new features, EDGAR 2.0 provides extended phylogenetic analysis features like AAI (Average Amino Acid Identity) and ANI (Average Nucleotide Identity) matrices, genome set size statistics and modernized visualizations like interactive synteny plots or Venn diagrams. Thereby, the software supports a quick and user-friendly survey of evolutionary relationships between microbial genomes and simplifies the process of obtaining new biological insights into their differential gene content. All features are offered to the scientific community via a web-based and therefore platform-independent user interface, which allows easy browsing of precomputed datasets. The web server is accessible at http://edgar.computational.bio

    Radar Imaging of Volcanic Fields and Sand Dune Fields: Implications for VOIR

    Get PDF
    A number of volcanic fields and sand dune fields in the western part of North America were studied using aircraft and Seasat synthetic aperture radar images and LANDSAT images. The capability of radars with different characteristics (i.e., frequency, polarization and look angles was assessed to identify and map different volcanic features, lava flows and sand dune types. It was concluded that: (1) volcanic features which have a relatively large topographic expression (i.e., cinder cones, collapse craters, calderas, etc.) are easily identified; (2) lava flows of different ages can be identified, particularly on the L-band images; and (3) sand dunes are clearly observed and their extent and large scale geometric characteristics determined, provided the proper imaging geometry exists

    Maximal Sharing in the Lambda Calculus with letrec

    Full text link
    Increasing sharing in programs is desirable to compactify the code, and to avoid duplication of reduction work at run-time, thereby speeding up execution. We show how a maximal degree of sharing can be obtained for programs expressed as terms in the lambda calculus with letrec. We introduce a notion of `maximal compactness' for lambda-letrec-terms among all terms with the same infinite unfolding. Instead of defined purely syntactically, this notion is based on a graph semantics. lambda-letrec-terms are interpreted as first-order term graphs so that unfolding equivalence between terms is preserved and reflected through bisimilarity of the term graph interpretations. Compactness of the term graphs can then be compared via functional bisimulation. We describe practical and efficient methods for the following two problems: transforming a lambda-letrec-term into a maximally compact form; and deciding whether two lambda-letrec-terms are unfolding-equivalent. The transformation of a lambda-letrec-term LL into maximally compact form L0L_0 proceeds in three steps: (i) translate L into its term graph G=[[L]]G = [[ L ]]; (ii) compute the maximally shared form of GG as its bisimulation collapse G0G_0; (iii) read back a lambda-letrec-term L0L_0 from the term graph G0G_0 with the property [[L0]]=G0[[ L_0 ]] = G_0. This guarantees that L0L_0 and LL have the same unfolding, and that L0L_0 exhibits maximal sharing. The procedure for deciding whether two given lambda-letrec-terms L1L_1 and L2L_2 are unfolding-equivalent computes their term graph interpretations [[L1]][[ L_1 ]] and [[L2]][[ L_2 ]], and checks whether these term graphs are bisimilar. For illustration, we also provide a readily usable implementation.Comment: 18 pages, plus 19 pages appendi
    • 

    corecore