304 research outputs found

    Analysis of the shallow and deep center occupancies in silicon-doped aluminum gallium arsenide using a multilevel donor model

    Get PDF
    The concentration of occupied deep centers in Si-doped AlxGa1-xAs for x=0.2 has been calculated from a three-level donor model, in which the shallow levels are treated as excited states of the deep (DX) ground state. The deep level is assumed to be tied to the L valley, and the shallow levels to the G and X valleys. The behavior of the free-electron density and the thermal activation energy as function of composition is in good agreement with experimental results reported in the literature. In this model of dependent donor levels the deep-level occupancy can be directly calculated without needing deep-level transient spectroscopy measurements. A two-level donor model is used to calculate the pressure dependence of the deep level from a hydrostatic pressure experiment on a GaAs/Al0.3Ga0.7As heterostructure reported in the literature. We assume a shallow level tied to the G valley and an arbitrary deep level which is not coupled to any of the conduction bands. The calculation of the position of the deep level relative to the G valley as a function of pressure confirms the coupling of the deep level to the L valley. In this dependent donor model no large compensation is needed to fit the experimental data

    Leven met energie

    Get PDF

    PICOSECOND CARRIER CAPTURE BY A SEPARATE CONFINEMENT LASER STRUCTURE

    Get PDF
    Contains fulltext : 14356.pdf (publisher's version ) (Open Access)59-6

    TRPV1: A Target for Next Generation Analgesics

    Get PDF
    Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects

    Development and validation of a supervised deep learning algorithm for automated whole-slide programmed death-ligand 1 tumour proportion score assessment in non-small cell lung cancer

    Get PDF
    Aims Immunohistochemical programmed death-ligand 1 (PD-L1) staining to predict responsiveness to immunotherapy in patients with advanced non-small cell lung cancer (NSCLC) has several drawbacks: a robust gold standard is lacking, and there is substantial interobserver and intraobserver variance, with up to 20% discordance around cutoff points. The aim of this study was to develop a new deep learning-based PD-L1 tumour proportion score (TPS) algorithm, trained and validated on a routine diagnostic dataset of digitised PD-L1 (22C3, laboratory-developed test)-stained samples. Methods and results We designed a fully supervised deep learning algorithm for whole-slide PD-L1 assessment, consisting of four sequential convolutional neural networks (CNNs), using aiforia create software. We included 199 whole slide images (WSIs) of 'routine diagnostic' histology samples from stage IV NSCLC patients, and trained the algorithm by using a training set of 60 representative cases. We validated the algorithm by comparing the algorithm TPS with the reference score in a held-out validation set. The algorithm had similar concordance with the reference score (79%) as the pathologists had with one another (75%). The intraclass coefficient was 0.96 and Cohen's kappa coefficient was 0.69 for the algorithm. Around the 1% and 50% cutoff points, concordance was also similar between pathologists and the algorithm. Conclusions We designed a new, deep learning-based PD-L1 TPS algorithm that is similarly able to assess PD-L1 expression in daily routine diagnostic cases as pathologists. Successful validation on routine diagnostic WSIs and detailed visual feedback show that this algorithm meets the requirements for functioning as a 'scoring assistant'.Pathogenesis and treatment of chronic pulmonary disease

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.

    Spatio-temporal dynamics of quantum-well excitons

    Get PDF
    We investigate the lateral transport of excitons in ZnSe quantum wells by using time-resolved micro-photoluminescence enhanced by the introduction of a solid immersion lens. The spatial and temporal resolutions are 200 nm and 5 ps, respectively. Strong deviation from classical diffusion is observed up to 400 ps. This feature is attributed to the hot-exciton effects, consistent with previous experiments under cw excitation. The coupled transport-relaxation process of hot excitons is modelled by Monte Carlo simulation. We prove that two basic assumptions typically accepted in photoluminescence investigations on excitonic transport, namely (i) the classical diffusion model as well as (ii) the equivalence between the temporal and spatial evolution of the exciton population and of the measured photoluminescence, are not valid for low-temperature experiments.Comment: 8 pages, 6 figure

    Trial by Dutch laboratories for evaluation of non-invasive prenatal testing. Part I—clinical impact

    Get PDF
    Objective: To evaluate the clinical impact of nationwide implementation of genome-wide non-invasive prenatal testing (NIPT) in pregnancies at increased risk for fetal trisomies 21, 18 and 13 (TRIDENT study). Method: Women with elevated risk based on first trimester combined testing (FCT ≥ 1:200) or medical history, not advanced maternal age alone, were offered NIPT as contingent screening test, performed by Dutch University Medical laboratories. We analyzed uptake, test performance, redraw/failure rate, turn-around time and pregnancy outcome. Results: Between 1 April and 1 September 2014, 1413/23 232 (6%) women received a high-risk FCT result. Of these, 1211 (85.7%) chose NIPT. One hundred seventy-nine women had NIPT based on medical history. In total, 1386/1390 (99.7%) women received a result, 6 (0.4%) after redraw. Mean turn-around time was 14 days. Follow-up was available in 1376 (99.0%) pregnancies. NIPT correctly predicted 37/38 (97.4%) trisomies 21, 18 or 13 (29/30, 4/4 and 4/4 respectively); 5/1376 (0.4%) cases proved to be false positives: trisomies 21 (n = 2), 18 (n = 1) and 13 (n = 2). Estimated reduction in invasive testing was 62%. Conclusion: Introduction of NIPT in the Dutch National healthcare-funded Prenatal Screening Program resulted in high uptake and a vast reduction of invasive testing. Our study supports offering NIPT to pregnant women at increased risk for fetal trisomy. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd
    • …
    corecore