10 research outputs found

    Loss of hepatic SMLR1 causes hepatosteatosis and protects against atherosclerosis due to decreased hepatic VLDL secretion

    Get PDF
    The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 (SMLR1), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes (Smlr1-LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1-LKO mice versus controls. We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.Medicinal Chemistr

    24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux

    Get PDF
    Both apolipoprotein E (apoE) and 24(S)-hydroxycholesterol are involved in the pathogenesis of Alzheimer disease (AD). It has been hypothesized that apoE affects AD development via isoform-specific effects on lipid trafficking between astrocytes and neurons. However, the regulation of the cholesterol supply of neurons via apoE-containing high density lipoproteins remains to be clarified. We show for the first time that the brain-specific metabolite of cholesterol produced by neurons, i.e. 24(S)-hydroxycholesterol, induces apoE transcription, protein synthesis, and secretion in a dose- and time-dependent manner in cells of astrocytic but not of neuronal origin. Moreover, 24(S)-hydroxycholesterol primes astrocytoma, but not neuroblastoma cells, to mediate cholesterol efflux to apoE. Similar results were obtained using the synthetic liver X receptor (LXR) agonist GW683965A, suggesting involvement of an LXR-controlled signaling pathway. A 10-20-fold higher basal LXR alpha and -beta expression level in astrocytoma compared with neuroblastoma cells may underlie these differential effects. Furthermore, apoE-mediated cholesterol efflux from astrocytoma cells may be controlled by the ATP binding cassette transporters ABCA1 and ABCG1, since their expression was also up-regulated by both compounds. In contrast, ABCG4 seems not to be involved, because its expression was induced only in neuronal cells. The expression of sterol regulatory element-binding protein (SREBP-2), low density lipoprotein receptor, 3-hydroxy-3-methylglutaryl-CoA reductase, and SREBP-1c was transiently up-regulated by GW683965A in astrocytes but down-regulated by 24(S)-hydroxycholesterol, suggesting that cholesterol efflux and synthesis are regulated independently. In conclusion, evidence is provided that 24(S)-hydroxycholesterol induces apoE-mediated efflux of cholesterol in astrocytes via an LXR-controlled pathway, which may be relevant for chronic and acute neurological diseases

    Liver X receptor activation restores memory in aged AD mice without reducing amyloid

    No full text
    Contains fulltext : 98057.pdf (publisher's version ) (Closed access)Alterations in cerebral cholesterol metabolism are thought to play a role in the progression of Alzheimer's disease (AD). Liver X receptors (LXRs) are key regulators of cholesterol metabolism. The synthetic LXR activator, T0901317 has been reported to improve memory functions in animal models for AD and to reduce amyloid-beta (Abeta) deposition in the brain. Here we provide evidence that long-term administration of T0901317 to aged, 21-month-old APPSLxPS1mut mice restores impaired memory. Cerebral cholesterol turnover was enhanced as indicated by the increased levels of brain cholesterol precursors and the upregulation of LXR-target genes Abca1, Abcg1, and Apoe. Unexpectedly, the improved memory functions in the APPSLxPS1mut mice after T0901317 treatment were not accompanied by a decrease in Abeta plaque load in the cortex or hippocampus DG, CA1 or CA3. T0901317 administration also enhanced cerebral cholesterol turnover in aged C57BL/6NCrl mice, but did not further improve their memory functions. In conclusion, long-term activation of the LXR-pathway restored memory functions in aged APPSLxPS1mut mice with advanced Abeta deposition. However the beneficial effects of T0901317 on memory in the APPSLxPS1mut mice were independent of the Abeta plaque load in the hippocampus, but were associated with enhanced brain cholesterol turnover

    Chronic prednisolone treatment aggravates hyperglycemia in mice fed a high-fat diet but does not worsen dietary fat-induced insulin resistance

    No full text
    Synthetic glucocorticoids such as prednisolone have potent antiinflammatory actions. Unfortunately, these drugs induce severe adverse effects in patients, many of which resemble features of the metabolic syndrome, such as insulin resistance. In this study, we investigated whether adverse effects of prednisolone on glucose homeostasis are aggravated in mice with compromised insulin sensitivity due to a high-fat diet by applying various methods to analyze changes in insulin sensitivity in mice. C57BL/6J micewerefed a high-fat diet for 6wkandtreated with either prednisolone (10 mg/kg · d) or vehicle for the last 7 d. Insulin sensitivity and blood glucose kinetics were analyzed with state-of-the-art stable isotope procedures in different experimental conditions. Prednisolone treatment aggravated fasting hyperglycemia and hyperinsulinemia caused by high-fat feeding, resulting in a higher homeostatic assessment model of insulin resistance. In addition, prednisolone-treated high-fat diet-fed mice appeared less insulin sensitive by detailed analysis of basal glucose kinetics. Remarkably, using hyperinsulinemic-euglycemic or hyperglycemic clamp techniques, neither hepatic nor peripheral insulin resistance was worsened in the group that was treated with prednisolone. Yet analysis of hepatic glucose metabolism revealed that prednisolone did alter glycogen balance by reducing glycogen synthase flux under hyperinsulinemic as well as hyperglycemic conditions. In addition to elevated insulin levels, prednisolone-treated mice showed a major rise in plasma leptin and fibroblast growth factor 21 levels. Our data indicate that prednisoloneinduced adverse effects on glucose metabolism in high-fat diet-fed mice do not reflect impaired insulin sensitivity but may be caused by other changes in the hormonal regulatory network controlling glucose metabolism such as fibroblast growth factor 21 and leptin. Copyrigh

    Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice

    No full text
    Contains fulltext : 174424.pdf (publisher's version ) (Closed access)BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) contribute. The mechanisms controlling the flux of cholesterol through the TICE pathway, however, are poorly understood. We aimed to identify mechanisms that regulate and stimulate TICE. METHODS: We performed studies with C57Bl/6J mice, as well as with mice with intestine-specific knockout of the farnesoid X receptor (FXR), mice that express an FXR transgene specifically in the intestine, and ABCG8-knockout mice. Mice were fed a control diet or a diet supplemented with the FXR agonist PX20606, with or without the cholesterol absorption inhibitor ezetimibe. Some mice with intestine-specific knockout of FXR were given daily injections of fibroblast growth factor (FGF)19. To determine fractional cholesterol absorption, mice were given intravenous injections of cholesterol D5 and oral cholesterol D7. Mice were given 13C-acetate in drinking water for measurement of cholesterol synthesis. Bile cannulations were performed and biliary cholesterol secretion rates were assessed. In a separate set of experiments, bile ducts of male Wistar rats were exteriorized, allowing replacement of endogenous bile by a model bile. RESULTS: In mice, we found TICE to be regulated by intestinal FXR via induction of its target gene Fgf15 (FGF19 in rats and human beings). Stimulation of this pathway caused mice to excrete up to 60% of their total cholesterol content each day. PX20606 and FGF19 each increased the ratio of muricholate:cholate in bile, inducing a more hydrophilic bile salt pool. The altered bile salt pool stimulated robust secretion of cholesterol into the intestinal lumen via the sterol-exporting heterodimer adenosine triphosphate binding cassette subfamily G member 5/8 (ABCG5/G8). Of note, the increase in TICE induced by PX20606 was independent of changes in cholesterol absorption. CONCLUSIONS: Hydrophilicity of the bile salt pool, controlled by FXR and FGF15/19, is an important determinant of cholesterol removal via TICE. Strategies that alter bile salt pool composition might be developed for the prevention of cardiovascular disease. Transcript profiling: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=irsrayeohfcntqx&acc=GSE74101
    corecore