1,144 research outputs found
A Structural and Dynamical Study of Late-Type, Edge-On Galaxies: I. Sample Selection and Imaging Data
We present optical (B & R) and infrared (K_s) images and photometry for a
sample of 49 extremely late-type, edge-on disk galaxies selected from the Flat
Galaxy Catalog of Karenchentsev et al. (1993). Our sample was selected to
include galaxies with particularly large axial ratios, increading the
likelihood that the galaxies in the sample are truly edge-on. We have also
concentrated the sample on galaxies with low apparent surface brightness, in
order to increase the representation of intrinisically low surface brightness
galaxies. Finally, the sample was chosen to have no apprarent bulges or optical
warps so that the galaxies represent undisturbed, ``pure disk'' systems. The
resulting sample forms the basis for a much larger spectroscopic study designed
to place constraints on the physical quantities and processes which shape disk
galaxies. The imaging data presented in this paper has been painstakingly
reduced and calibrated to allow accurate surface photometry of features as
faint as 30 mag/sqr-arcsec in B and 29 mag/sqr-arcsec in R on scales larger
than 10 arcsec. Due to limitations in sky subtraction and flat fielding, the
infrared data can reach only to 22.5 mag/sqr-arcsec in K_s on comparable
scales. As part of this work, we have developed a new method for quantifying
the reliability of surface photometry, which provides useful diagnostics for
the presence of scattered light, optical emission from infrared cirrus, and
other sources of non-uniform sky backgrounds.Comment: scheduled to appear in the Astronomical Journal, LaTeX, 36 pages
including 7 pages of figures (fig 1-2,4). A low resolution version of Figure
3 is included in JPEG format; contours are seriously degraded. A full
resolution Postscript version of Figure 3 (10.6Mb,gzipped) is available
through anonymous ftp at
ftp://ftp.astro.washington.edu/pub/users/jd/FGC/dalcanton.f3.ps.g
Triggering the Formation of Halo Globular Clusters with Galaxy Outflows
We investigate the interactions of high-redshift galaxy outflows with
low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While
atomic cooling allows star formation in larger primordial objects, such
"minihalos" are generally unable to form stars by themselves. However, the
large population of high-redshift starburst galaxies may have induced
widespread star formation in these objects, via shocks that caused intense
cooling both through nonequilibrium H2 formation and metal-line emission. Using
a simple analytic model, we show that the resulting star clusters naturally
reproduce three key features of the observed population of halo globular
clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to
the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the
momentum imparted in such interactions is sufficient to strip the gas from its
associated dark matter halo, explaining why GCs do not reside in dark matter
potential wells. Finally, the mixing of ejected metals into the primordial gas
is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a
given GC, while at the same time allowing for a large spread in metallicity
between different clusters. To study this possibility in detail, we use a
simple 1D numerical model of turbulence transport to simulate mixing in
cloud-outflow interactions. We find that as the shock shears across the side of
the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched
material into > 20% of the cloud. Such estimates ignore the likely presence of
large-scale vortices, however, which would further enhance turbulence
generation. Thus quantitative mixing predictions must await more detailed
numerical studies.Comment: 21 pages, 11 figures, Apj in pres
Specific probes efficiently distinguish root-knot nematode species using signature sequences in the ribosomal intergenic spacer
Ont Ă©tĂ© Ă©tablies des sondes molĂ©culaires - destinĂ©es Ă identifier les espĂšces de #Meloidogyne - grĂące Ă des diffĂ©rences spĂ©cifiques dans l'espaceur intergĂ©nique (IGS) de l'ADN ribosomal. Les sĂ©quences de nuclĂ©otides de l'IGS ont Ă©tĂ© obtenues en sĂ©quençant l'ADN amplifiĂ©e par PCR. L'alignement des sĂ©quences de l'IGS de #M. chitwoodi et #M. fallax a rĂ©vĂ©lĂ© plusieurs rĂ©gions contenant des diffĂ©rences localisĂ©es. Des amorces PCR ont Ă©tĂ© synthĂ©tisĂ©es qui ont donnĂ© des produits d'amplification spĂ©cifiques lorsqu'utilisĂ©es avec des produits d'amorce non spĂ©cifiques, ont pu ĂȘtre sĂ©parĂ©s par leur taille dans un gel d'agarose, procurant ainsi un test fiable et prĂ©cis ne nĂ©cessitant pas de restriction enzymatique. L'amplification de l'ADN d'un nĂ©matode juvĂ©nile ou d'un oeuf par PCR multiplex a permis d'identifier #M. chitwoodi et #M. fallax et de les sĂ©parer de #M. hapla, #M. javanica, #M. arenaria et #M. mayaguensis$. (RĂ©sumĂ© d'auteur
Model for Gravitational Interaction between Dark Matter and Baryons
We propose a phenomenological model where the gravitational interaction
between dark matter and baryons is suppressed on small, subgalactic scales. We
describe the gravitational force by adding a Yukawa contribution to the
standard Newtonian potential and show that this interaction scheme is
effectively suggested by the available observations of the inner rotation
curves of small mass galaxies. Besides helping in interpreting the cuspy
profile of dark matter halos observed in N-body simulations, this potential
regulates the quantity of baryons within halos of different masses.Comment: 4 pages, 2 figures, final versio
Development of an open-source toolbox for the analysis and visualization of remotely sensed time series
The GEONETCast data-dissemination system delivers free multi-source raw satellite images and processed products to users worldwide; from these data, users can construct long time series to study dynamic phenomena. To explore these dynamics, using an animation with few controls is common practice. But animations easily produce information overload leading to change blindness, a problem that can be addressed in various ways. We present a combination of analytical and visual functionalities to better support visual exploration of animated time series. Analytical pre-processing functions include slicing and tracking of objects of interest. Results of the slicing and the tracking are input to the visualization environment, which is further enriched by tools to make various time, attribute, and area selections and by options to visually enhance selections relative to their surroundings, visualize the path of moving objects, and multiple layers. The resulting toolbox is dedicated to visual exploration and analysis of dynamic phenomena in time series. A case study demonstrates, with a use scenario, how it works. Early exposure of some visualization functions to users has already led to improvements, but more extensive testing will follow after further enrichment of the toolbox. Directions of future research are described
The Population of Weak Mg II Absorbers I. A Survey of 26 QSO HIRES/Keck Spectra
We present a search for "weak" MgII absorbers [those with W_r(2796) < 0.3 A
in the HIRES/Keck spectra of 26 QSOs. We found 30, of which 23 are newly
discovered. The spectra are 80% complete to W_r(2796) = 0.02 A and have a
cumulative redshift path of ~17.2 for the redshift range 0.4 < z < 1.4. The
number of absorbers per unit redshift, dN/dz, is seen to increase as the
equivalent width threshold is decreased; we obtained dN/dz = 1.74+/-0.10 for
our 0.02 <= W_r(2796) < 0.3 A sample. The equivalent width distribution follows
a power law with slope -1.0; there is no turnover down to W_r(2796) = 0.02 A at
= 0.9. Weak absorbers comprise at least 65% of the total MgII absorption
population, which outnumbers Lyman limit systems (LLS) by a factor of
3.8+/-1.1; the majority of weak MgII absorbers must arise in sub-LLS
environments. Tentatively, we predict that ~5% of the Lyman-alpha forest clouds
with W_r(1215) > 0.1 A will have detectable MgII absorption to W_r,min(2796) =
0.02 A and that this is primarily a high-metallicity selection effect (Z/Z_sun]
> -1). This implies that MgII absorbing structures figure prominently as
tracers of sub-LLS environments where gas has been processed by stars. We
compare the number density of W_r(2796) > 0.02 A absorbers with that of both
high and low surface brightness galaxies and find a fiducial absorber size of
35h^-1 to 63h^-1 kpc, depending upon the assumed galaxy population and their
absorption properties. The individual absorbing "clouds" have W_r(2796) <= 0.15
A and their narrow (often unresolved) line widths imply temperatures of ~25,000
K. We measured W_r(1548) from CIV in FOS/HST archival spectra and, based upon
comparisons with FeII, found a range of ionization conditions (low, high, and
multi-phase) in absorbers selected by weak MgII.Comment: Accepted Version: 43 pages, PostScript figures embedded; accepted to
ApJ; updated version includes analysis of CIV absorptio
Reversible and Irreversible Interactions of Poly(3-hexylthiophene) with Oxygen Studied by Spin-Sensitive Methods
Understanding of degradation mechanisms in polymer:fullerene
bulk-heterojunctions on the microscopic level aimed at improving their
intrinsic stability is crucial for the breakthrough of organic photovoltaics.
These materials are vulnerable to exposure to light and/or oxygen, hence they
involve electronic excitations. To unambiguously probe the excited states of
various multiplicities and their reactions with oxygen, we applied combined
magneto-optical methods based on multifrequency (9 and 275 GHz) electron
paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic
resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and
polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM =
[6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct
photochemical reaction routes, one being fully reversible and related to the
formation of polymer:oxygen charge transfer complexes, the other one,
irreversible, being related to the formation of singlet oxygen under
participation of bound triplet excitons on the polymer chain. With respect to
the blends, we discuss the protective effect of the methanofullerenes on the
conjugated polymer bypassing the triplet exciton generation
Operator Product Expansion for Exclusive Decays: B^+ ->Ds^+ e+e- and B^+ -> Ds^{*+} e+e-
The decays and proceed
through a weak and an electromagnetic interaction. This is a typical ``long
distance'' process, usually difficult to compute systematically. We propose
that over a large fraction of phase space a combination of an operator product
and heavy quark expansions effectively turns this process into one in which the
weak and electromagnetic interactions occur through a local operator. Moreover,
we use heavy quark spin symmetry to relate all the local operators that appear
in leading order of the operator expansion to two basic ones. We use this
operator expansion to estimate the decay rates for .Comment: 4 pages, 1 figure, Latex, published version in PR
Phenomenological Analysis of D Meson Lifetimes
The QCD-based operator-product-expansion technique is systematically applied
to the study of charmed meson lifetimes. We stress that it is crucial to take
into account the momentum of the spectator light quark of charmed mesons,
otherwise the destructive Pauli-interference effect in decays will lead
to a negative decay width for the . We have applied the QCD sum rule
approach to estimate the hadronic matrix elements of color-singlet and
color-octet 4-quark operators relevant to nonleptonic inclusive decays. The
lifetime of is found to be longer than that of because the latter
receives a constructive -exchange contribution, whereas the hadronic
annihilation and leptonic contributions to the former are compensated by the
Pauli interference. We obtain the lifetime ratio
, which is larger than some earlier theoretical
estimates, but still smaller than the recent measurements by CLEO and E791.Comment: 14 pages, 3 figure
Analysis of hadronic invariant mass spectrum in inclusive charmless semileptonic B decays
We make an analysis of the hadronic invariant mass spectrum in inclusive
charmless semileptonic B meson decays in a QCD-based approach. The decay width
is studied as a function of the invariant mass cut. We examine their
sensitivities to the parameters of the theory. The theoretical uncertainties in
the determination of from the hadronic invariant mass spectrum are
investigated. A strategy for improving the theoretical accuracy in the value of
is described.Comment: 13 pages, 5 Postscript figure
- âŠ