11 research outputs found

    Bayesian sequential experimental design for binary response data with application to electromyographic experiments

    Get PDF
    We develop a sequential Monte Carlo approach for Bayesian analysis of the experimental design for binary response data. Our work is motivated by surface electromyographic (SEMG) experiments, which can be used to provide information about the functionality of subjects' motor units. These experiments involve a series of stimuli being applied to a motor unit, with whether or not the motor unit res for each stimulus being recorded. The aim is to learn about how the probability of ring depends on the applied stimulus (the so-called stimulus response curve); One such excitability parameter is an estimate of the stimulus level for which the motor unit has a 50% chance of ring. Within such an experiment we are able to choose the next stimulus level based on the past observations. We show how sequential Monte Carlo can be used to analyse such data in an online manner. We then use the current estimate of the posterior distribution in order to choose the next stimulus level. The aim is to select a stimulus level that mimimises the expected loss. We will apply this loss function to the estimates of target quantiles from the stimulus-response curve. Through simulation we show that this approach is more ecient than existing sequential design methods for choosing the stimulus values. If applied in practice, it could more than halve the length of SEMG experiments

    Optimal stimulation settings for CMAP scan registrations

    Get PDF
    Background: The CMAP (Compound Muscle Action Potential) scan is a non-invasive electrodiagnostic tool, which provides a quick and visual assessment of motor unit potentials as electrophysiological components that together constitute the CMAP. The CMAP scan records the electrical activity of the muscle (CMAP) in response to transcutaneous stimulation of the motor nerve with gradual changes in stimulus intensity. Large MUs, including those that result from collateral reinnervation, appear in the CMAP scan as so-called steps, i.e., clearly visible jumps in CMAP amplitude. The CMAP scan also provides information on nerve excitability. This study aims to evaluate the influence of the stimulation protocol used on the CMAP scan and its quantification. Methods: The stimulus frequency (1, 2 and 3 Hz), duration (0.05, 0.1 and 0.3 ms), or number (300, 500 and 1000 stimuli) in CMAP scans of 23 subjects was systematically varied while the other two parameters were kept constant. Pain was measured by means of a visual analogue scale (VAS). Non-parametric paired tests were used to assess significant differences in excitability and step variables and VAS scores between the different stimulus parameter settings. Results: We found no effect of stimulus frequency on CMAP scan variables or VAS scores. Stimulus duration affected excitability variables significantly, with higher stimulus intensity values for shorter stimulus durations. Step variables showed a clear trend towards increasing values with decreasing stimulus number. Conclusions: A protocol delivering 500 stimuli at a frequency of 2 Hz with a 0.1 ms pulse duration optimized CMAP scan quantification with a minimum of subject discomfort, artefact and duration of the recording. CMAP scan variables were influenced by stimulus duration and number; hence, these need to be standardized in future studies

    Changes in motor nerve excitability in acute phase Guillain-Barré syndrome

    Get PDF
    Background: The most common subtypes of Guillain-BarrĂ© syndrome (GBS) are acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). In the first days after the onset of weakness, standard nerve conduction studies (NCS) may not distinguish GBS subtypes. Reduced nerve excitability may be an early symptom of nerve dysfunction, which can be determined with the compound muscle action potential (CMAP) scan. The aim of this study was to explore whether early changes in motor nerve excitability in GBS patients are related to various subtypes. Methods: Prospective case–control study in 19 GBS patients from The Netherlands and 22 from Bangladesh. CMAP scans were performed within 2 days of hospital admission and NCS 7–14 days after onset of weakness. CMAP scans were also performed in age- and country-matched controls. Results: CMAP scan patterns of patients who were classified as AMAN were distinctly different compared to the CMAP scan patterns of the patients who were classified as AIDP. The most pronounced differences were found in the stimulus intensity parameters. Conclusions: CMAP scans made at hospital admission demonstrate several characteristics that can be used as an early indicator of GBS subtype

    Optimal stimulation settings for CMAP scan registrations

    No full text
    Abstract Background The CMAP (Compound Muscle Action Potential) scan is a non-invasive electrodiagnostic tool, which provides a quick and visual assessment of motor unit potentials as electrophysiological components that together constitute the CMAP. The CMAP scan records the electrical activity of the muscle (CMAP) in response to transcutaneous stimulation of the motor nerve with gradual changes in stimulus intensity. Large MUs, including those that result from collateral reinnervation, appear in the CMAP scan as so-called steps, i.e., clearly visible jumps in CMAP amplitude. The CMAP scan also provides information on nerve excitability. This study aims to evaluate the influence of the stimulation protocol used on the CMAP scan and its quantification. Methods The stimulus frequency (1, 2 and 3 Hz), duration (0.05, 0.1 and 0.3 ms), or number (300, 500 and 1000 stimuli) in CMAP scans of 23 subjects was systematically varied while the other two parameters were kept constant. Pain was measured by means of a visual analogue scale (VAS). Non-parametric paired tests were used to assess significant differences in excitability and step variables and VAS scores between the different stimulus parameter settings. Results We found no effect of stimulus frequency on CMAP scan variables or VAS scores. Stimulus duration affected excitability variables significantly, with higher stimulus intensity values for shorter stimulus durations. Step variables showed a clear trend towards increasing values with decreasing stimulus number. Conclusions A protocol delivering 500 stimuli at a frequency of 2 Hz with a 0.1 ms pulse duration optimized CMAP scan quantification with a minimum of subject discomfort, artefact and duration of the recording. CMAP scan variables were influenced by stimulus duration and number; hence, these need to be standardized in future studies.</p

    Quantitative EEG monitoring during cerebral air embolism and hyperbaric oxygen treatment in a pig model

    No full text
    The purpose of this study was to evaluate the contribution of quantitative EEG (qEEG) to an animal model of cerebral air embolism (CAE). In 12 anesthetized pigs, air was injected into the internal carotid artery, and hyperbaric oxygen (HBO) treatment was started either after 3 minutes or after 60 minutes (United States Navy Treatment Table 6). Off-line spectral analysis was used to determine the frequency content of the EEG signal, and factor analysis was performed to determine the frequency ranges that optimally showed the changes in the power spectrum. Factor analysis revealed two factors that represented different and independent spectral changes during embolization: 0.5 to 7.3 Hz (band 1) and 26.4 to 30.3 Hz (band 2). Shortly after embolization, the power in both bands decreased to a minimum, representing an isoelectric EEG in 11 out of the 12 animals. EEG differences between animals were considerable, despite standardized doses of injected air, and qEEG can objectively assess and quantify these differences in immediate impact of air embolism on brain function. Also, qEEG enabled monitoring of the recovery from the initial embolic event and of the response on treatment. The initial recovery was much more protracted in band 2 than in band 1, but even after completing HBO treatment, qEEG values did not return to baseline values in all animals. In addition, two animals did not survive until the end of the HBO treatment, and qEEG proved to be superior to the other measured hemodynamic variables to detect and ensure a deterioration of brain function. This study showed that qEEG monitoring has significant additional value to monitoring HBO treatmen

    Natural conduits for bridging a 15-mm nerve defect:Comparison of the vein supported by muscle and bone marrow stromal cells with a nerve autograft

    No full text
    <p>Object: The gold standard for reconstructing large nerve defects, the nerve autograft, results in donor-site morbidity. This detrimental consequence drives the search for alternatives. We used a vein filled with a small piece of fresh muscle to prevent the vein from collapsing and with bone marrow stromal cells (BMSCs) to enhance regeneration.</p><p>Methods: In 60 rats, a 15-mm sciatic nerve defect was bridged with a nerve autograft, a vein filled with muscle or a vein filled with muscle and BMSCs. Toe spread and pinprick were used to evaluate motor and sensory function. Compound muscle action potentials (CMAPs) and the gastrocnemius muscle index (GMI) were recorded to assess conduction properties and denervation atrophy. Extensive histology was performed to confirm presence of BMSCs and to evaluate regeneration by staining neural tissue for Schwann cells and neural growth factor.</p><p>Results: After 12 weeks, all animals responded with toe spread and pinprick reaction; significant differences were found between groups.</p><p>Six weeks post grafting no difference was found comparing the GMI between the groups. Group I had a significant increase in GMI at 12 weeks compared to group II and group III. The CMAP measurements showed comparable results at 6 weeks post grafting. Twelve weeks after reconstruction, group I had significantly better results compared to group II and group III. Group III showed a tendency to outperform group II at 12 weeks postoperatively. Immunofluorescence analysis showed an increased number of Schwann cells in group III compared to group II. The BMSCs were visible 6 and 12 weeks postoperatively.</p><p>Conclusions: This study is a step forward in the search for an alternative to the nerve autograft because it demonstrates the beneficial effect of BMSCs to a conduit. However, our data do not demonstrate sufficient benefit to warrant clinical implementation at this stage. (C) 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.</p>
    corecore