458 research outputs found

    Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight

    Get PDF
    Recent developments in agriculture mechanization have generated significant challenges towards sustainable approaches to reduce the environmental footprint and improve food quality. This paper highlights the benefits of using unmanned aerial systems (UASs) for precision spraying applications of pesticides, reducing the environmental risk and waste caused by spray drift. Several unmanned aerial spraying system (UASS) operation parameters and spray system designs are examined to define adequate configurations for specific treatments. A hexarotor DJI Matrice 600 equipped with T-Motor “15 × 5” carbon fiber blades is tested numerically using computational fluid dynamics (CFD) and experimentally in a wind tunnel. These tests assess the aerodynamic interaction between the wake of an advancing multicopter and the fine droplets generated by atomizers traditionally used in agricultural applications. The aim of this research is twofold. First, we analyze the effects of parameters such as flight speed (0, 2, and 3 m·s (Formula presented.)), nozzle type (hollowcone and fan), and injection pressure (2–3 bar) on spray distribution. In the second phase, we use data from the experimental campaign to validate numerical tools for the simulation of rotor–droplet interactions necessary to predict spray’s ground footprint and to plan a precise guidance algorithm to achieve on-target deposition and reduce the well-known droplet drift problem

    Preliminary Design of a Remotely Piloted Aircraft System for Crop-Spraying on Vineyards

    Get PDF
    This paper describes the preliminary design of an innovative concept rotary-wing Unmanned Aircraft System (UAS) for precision agriculture and aerial spraying applications. Aerial spraying of plant protection products and pesticides shows open challenges in terms of performance and regulatory requirements. In particular*the focus here is on highlighting the advantages of the proposed solution in performing precise and expeditious interventions, coping with the spray drift problem (i.e. minimization of drift). Flight performances and agronomists' requirements are combined to define the mission and the aerial vehicle and spray system design

    Avaliação da fertilidade dos solos do Distrito Federal.

    Get PDF
    O SNLCS tem procurado ampliar o alcance e a utilização prática, dos dados obtidos através dos levantamentos de solos que realiza. Prosseguindo as pesquisas que objetivam a elaboração do mapa de solos do Brasil a nível de reconhecimento, esta entidade vem complementando seus trabalhos com mapas de aptidão agrícola das terras, em relação com diferentes tipos de manejo e culturas. Dentro dos parâmetros usados para definir a aptidão agrícola dos solos, a fertilidade e o mais facilmente controlável e aquele cuja alteração modifica mais sensivelmente a produtividade das terras. Por outro lado, os mapas de aptidão, pela sua natureza, não mostram claramente as limitações de uso devido unicamente ao nível de fertilidade das terras. Tal informação é de grande importância ao estudo de viabilidade econômica de projetos agropecuários, por permitir estimar a necessidade de fertilizantes e corretivos para determinada área. A análise conjunta dos mapas de classificação e aptidão agrícola e ainda de uma avaliação da fertilidade dos solos, daria aos usuários dos trabalhos de levantamento uma visão mais completa dos recursos disponíveis, facilitando as decisões quanto ao tipo de exploração agrícola e ao sistema de manejo mais adequado em cada caso. O presente projeto propõe a complementação de cada trabalho de levantamento com uma avaliação e quantificação da fertilidade, cuja precisão e confiabilidade serão tanto maiores quanto maior for o nível de detalhe do levantamento de solos em que seja baseado.bitstream/item/62835/1/CNPS-BOL.-TEC.-74-80.pdf; bitstream/item/125962/1/Avaliacao-da-Fertilidade-dos-Solos-do-Distrito-Federal.pdfAcompanha 1 mapa, color. Escala 1:100.000

    In Vitro Production of Calcified Bone Matrix onto Wool Keratin Scaffolds via Osteogenic Factors and Electromagnetic Stimulus

    Get PDF
    Pulsed electromagnetic field (PEMF) has drawn attention as a potential tool to improve the ability of bone biomaterials to integrate into the surrounding tissue. We investigated the effects of PEMF (frequency, 75 Hz; magnetic induction amplitude, 2 mT; pulse duration, 1.3 ms) on human osteoblast-like cells (SAOS-2) seeded onto wool keratin scaffolds in terms of proliferation, differentiation, and production of the calcified bone extracellular matrix. The wool keratin scaffold offered a 3D porous architecture for cell guesting and nutrient diffusion, suggesting its possible use as a filler to repair bone defects. Here, the combined approach of applying a daily PEMF exposure with additional osteogenic factors stimulated the cells to increase both the deposition of bone-related proteins and calcified matrix onto the wool keratin scaffolds. Also, the presence of SAOS-2 cells, or PEMF, or osteogenic factors did not influence the compression behavior or the resilience of keratin scaffolds in wet conditions. Besides, ageing tests revealed that wool keratin scaffolds were very stable and showed a lower degradation rate compared to commercial collagen sponges. It is for these reasons that this tissue engineering strategy, which improves the osteointegration properties of the wool keratin scaffold, may have a promising application for long term support of bone formation in vivo

    Mutations in the Cardiac Ryanodine Receptor Gene (hRyR2) Underlie Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia is a genetic arrhythmogenic disorder characterized by stress-induced, bidirectional ventricular tachycardia that may degenerate into cardiac arrest and cause sudden death. The electrocardiographic pattern of this ventricular tachycardia closely resembles the arrhythmias associated with calcium overload and the delayed afterdepolarizations observed during digitalis toxicity. We speculated that a genetically determined abnormality of intracellular calcium handling might be the substrate of the disease; therefore, we considered the human cardiac ryanodine receptor gene (hRyR2) a likely candidate for this genetically transmitted arrhythmic disorder. METHODS AND RESULTS: Twelve patients presenting with typical catecholaminergic polymorphic ventricular tachycardia in the absence of structural heart abnormalities were identified. DNA was extracted from peripheral blood lymphocytes, and single-strand conformation polymorphism analysis was performed on polymerase chain reaction-amplified exons of the hRyR2 gene. Four single nucleotide substitutions leading to missense mutations were identified in 4 probands affected by the disease. Genetic analysis of the asymptomatic parents revealed that 3 probands carried de novo mutations. In 1 case, the identical twin of the proband died suddenly after having suffered syncopal episodes. The fourth mutation was identified in the proband, in 4 clinically affected family members, and in none of 3 nonaffected family members in a kindred with 2 sudden deaths that occurred at 16 and 14 years, respectively, in the sisters of the proband. CONCLUSIONS: We demonstrated that, in agreement with our hypothesis, hRyR2 is a gene responsible for catecholaminergic polymorphic ventricular tachycardia

    Atmospheric pressure non-equilibriumplasma for the production of composite materials

    Get PDF
    In the evolving field of tissue engineering, continuous advances are required to improve scaffold design and fabrication to obtain biomimetic supports for cell adhesion, proliferation, penetration and differentiation. Both electrospun fibrous scaffolds and hydrogels are used in this field since they well reproduce the structure of the extracellular matrix (ECM) of many biological tissues. Limitations of these two types of materials can be overcome through their combination, by developing composite structures combining enhanced mechanical properties (provided by the fibrous components) and improved cell penetration (provided by the gel phase) in a superior ability to mimic natural ECM that is constituted by both a fibrous protein network and a hydrogel matrix. Here we develop new composite materials made of electrospun PLLA scaffolds and poly(amidoamine) hydrogels with different degrees of crosslinking. To promote compatibilization and good adhesion between the two materials, surface chemical reactions between hydrogels and PLLA mats are induced by inserting amino functional groups on electrospun PLLA mats by means of atmospheric pressure non-thermal plasma. Results will be presented concerning the exposure of PLLA substrates to the plasma region generated by a Dielectric Barrier Discharge at atmospheric pressure, driven by a HV Amplifier connected to a function generator operating with a microsecond rise time and operated in N2. Surface and solid-state thermo-mechanical characterizations of plasma treated substrates and of resulting composite materials at different crosslinking degrees are presented. Results of mechanical tests show a high adhesion between hydrogel and plasma treated PLLA electrospun mats, underlining the opportunity to use atmospheric non-thermal plasmas to fabricate a composite starting from two materials otherwise physically incompatible. Potential effects of nanofibrous-hydrogel were evaluated by investigating pluripotent stem cells response

    Extra-small gold nanospheres decorated with a thiol-functionalized biodegradable and biocompatible linear polyamidoamine as nanovectors of anticancer molecules

    Get PDF
    Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles

    The cusp effect in eta' --> eta pi pi decays

    Full text link
    Strong final-state interactions create a pronounced cusp in eta' --> eta pi0 pi0 decays. We adapt and generalize the non-relativistic effective field theory framework developed for the extraction of pi pi scattering lengths from K --> 3 pi decays to this case. The cusp effect is predicted to have an effect of more than 8% on the decay spectrum below the pi+ pi- threshold.Comment: 11 pages, 8 figures; comment added, typos corrected, version published in Eur. Phys. J.

    A petro-chemical study of ancient mortars from the archaeological site of Kyme (Turkey)

    Get PDF
    Fourteen samples of ancient mortars (joint mortars and plasters) from the archaeological site of Kyme (Turkey) were studied by optical microscopy (OM), X-ray fluorescence (XRF), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM-EDS) and micro- Raman spectroscopy to obtain information about their composition.The study allowed us to identify a new type of plaster inside the archaeological site of Kyme, not detected by previous studies of this site, in which vegetable fibers were intentionally added to the mixture. The combination of a petrographic analysis on thin sections by polarized light microscopy with a chemical analysis, has allowed us to highlight similarities and differences between the mortars and to get information about the evolution of constructive techniques in the archaeological area

    UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses

    Get PDF
    Improvements in the spray application of plant protection products enhance agricultural sustainability by reducing environmental contamination, but by increasing food quality and human safety. Currently, Unmanned Aerial Vehicles (UAVs) are raising interest in spray applications in 3D crops. However, operational configurations of UAV-spray systems need further investigation to maximise the deposition in the canopy and minimise the off-target losses. Our experimental research focused on investigating the effects on the canopy spray deposition and coverage due to different UAV-spray system configurations. Twelve configurations were tested under field conditions in an experimental vineyard (cv. Barbera), derived from the combination of different UAV flight modes (band and broadcast spray applications), nozzle types (conventional and air inclusion), and UAV cruise speeds (1 and 3 m s-1). Also, the best treatment, among those tested, by using the UAV-spray system and a traditional airblast sprayer were compared. The data was analysed by testing the effects of the three operational parameters and their two- and three-way interactions by means of linear mixed models. The results indicated that the flight mode deeply affects spray application efficiency. Compared to the broadcast spray modes, the band spray mode was able to increase the average canopy deposition from 0.052 to 0.161 μL cm-2 (+ 309 %) and reduce the average ground losses from 0.544 to 0.246 μL cm-2 (- 54 %). The conventional airblast sprayer, operated at a low spray application rate, showed higher canopy coverage and lower ground losses in comparison to the best UAV-spray system configuration
    corecore