9 research outputs found

    Methicillin Resistance Transfer from Staphylocccus epidermidis to Methicillin-Susceptible Staphylococcus aureus in a Patient during Antibiotic Therapy

    Get PDF
    BACKGROUND: The mecA gene, encoding methicillin resistance in staphylococci, is located on a mobile genetic element called Staphylococcal Cassette Chromosome mec (SCCmec). Horizontal, interspecies transfer of this element could be an important factor in the dissemination of methicillin-resistant S. aureus (MRSA). Previously, we reported the isolation of a closely related methicillin-susceptible Staphylococcus aureus (MSSA), MRSA and potential SCCmec donor Staphylococcus epidermidis isolate from the same patient. Based on fingerprint techniques we hypothesized that the S. epidermidis had transferred SCCmec to the MSSA to become MRSA. The aim of this study was to show that these isolates form an isogenic pair and that interspecies horizontal SCCmec transfer occurred. METHODOLOGY/RESULTS: Whole genome sequencing of both isolates was performed and for the MSSA gaps were closed by conventional sequencing. The SCCmec of the S. epidermidis was also sequenced by conventional methods. The results show no difference in nucleotide sequence between the two isolates except for the presence of SCCmec in the MRSA. The SCCmec of the S. epidermidis and the MRSA are identical except for a single nucleotide in the ccrB gene, which results in a valine to alanine substitution. The main difference with the closely related EMRSA-16 is the presence of SaPI2 encoding toxic shock syndrome toxin and exfoliative toxin A in the MSSA-MRSA pair. No transfer of SCCmec from the S. epidermidis to the MSSA could be demonstrated in vitro. CONCLUSION: The MSSA and MRSA form an isogenic pair except for SCCmec. This strongly supports our hypothesis that the MRSA was derived from the MSSA by interspecies horizontal transfer of SCCmec from S. epidermidis O7.1

    Robot-assisted pelvic floor reconstructive surgery:an international Delphi study of expert users

    Get PDF
    Background: Robotic surgery has gained popularity for the reconstruction of pelvic floor defects. Nonetheless, there is no evidence that robot-assisted reconstructive surgery is either appropriate or superior to standard laparoscopy for the performance of pelvic floor reconstructive procedures or that it is sustainable. The aim of this project was to address the proper role of robotic pelvic floor reconstructive procedures using expert opinion. Methods: We set up an international, multidisciplinary group of 26 experts to participate in a Delphi process on robotics as applied to pelvic floor reconstructive surgery. The group comprised urogynecologists, urologists, and colorectal surgeons with long-term experience in the performance of pelvic floor reconstructive procedures and with the use of the robot, who were identified primarily based on peer-reviewed publications. Two rounds of the Delphi process were conducted. The first included 63 statements pertaining to surgeons’ characteristics, general questions, indications, surgical technique, and future-oriented questions. A second round including 20 statements was used to reassess those statements where borderline agreement was obtained during the first round. The final step consisted of a face-to-face meeting with all participants to present and discuss the results of the analysis. Results: The 26 experts agreed that robotics is a suitable indication for pelvic floor reconstructive surgery because of the significant technical advantages that it confers relative to standard laparoscopy. Experts considered these advantages particularly important for the execution of complex reconstructive procedures, although the benefits can be found also during less challenging cases. The experts considered the robot safe and effective for pelvic floor reconstruction and generally thought that the additional costs are offset by the increased surgical efficacy. Conclusion: Robotics is a suitable choice for pelvic reconstruction, but this Delphi initiative calls for more research to objectively assess the specific settings where robotic surgery would provide the most benefit.</p

    Phylogenetic analysis of WKZ-1 and 17 other <i>S. aureus</i> strains for which complete genomes are publicly available.

    No full text
    <p>Phylogenetic analysis of WKZ-1 and 17 other <i>S. aureus</i> strains for which complete genomes are publicly available.</p

    Alignment of the first part of SaPI2 from MRSA252 (top) with WKZ-1.

    No full text
    <p>Horizontal arrows indicate open reading frame possibly encoding proteins. White indicates no similarity between the proteins. The increasing greys scale indicates increasing similarity. Black arrows indicate identical sequences. Vertical arrow indicates the boundary between the <i>S. aureus</i> chromosome and SaPi2.</p

    Validation of the portable virtual reality training system for robotic surgery (PoLaRS): a randomized controlled trial

    No full text
    Background: As global use of surgical robotic systems is steadily increasing, surgical simulation can be an excellent way for robotic surgeons to acquire and retain their skills in a safe environment. To address the need for training in less wealthy parts of the world, an affordable surgical robot simulator (PoLaRS) was designed. Methods: The aim of this pilot study is to compare learning curve data of the PoLaRS prototype with those of Intuitive Surgical’s da Vinci Skills Simulator (dVSS) and to establish face- and construct validity. Medical students were divided into two groups; the test group (n = 18) performing tasks on PoLaRS and dVSS, and the control group (n = 20) only performing tasks on the dVSS. The performance parameters were Time, Path length, and the number of collisions. Afterwards, the test group participants filled in a questionnaire regarding both systems. Results: A total of 528 trials executed by 38 participants were measured and included for analyses. The test group significantly improved in Time, Path Length and Collisions during the PoLaRS test phase (P ≤ 0.028). No differences was found between the test group and the control group in the dVSS performances during the post-test phase. Learning curves showed similar shapes between both systems, and between both groups. Participants recognized the potential benefits of simulation training on the PoLaRS system. Conclusions: Robotic surgical skills improved during training with PoLaRS. This shows the potential of PoLaRS to become an affordable alternative to current surgical robot simulators. Validation with similar tasks and different expert levels is needed before implementing the training system into robotic training curricula

    «Per Salomone» (Sal 127,1): il Salmo 127 alla luce dei rapporti di intertestualità evocati dalla sua soprascritta

    No full text

    Predictive Factors and Risk Model for Positive Circumferential Resection Margin Rate after Transanal Total Mesorectal Excision in 2653 Patients with Rectal Cancer

    No full text
    The aim of this study was to determine the incidence of, and preoperative risk factors for, positive circumferential resection margin (CRM) after transanal total mesorectal excision (TaTME). Background: TaTME has the potential to further reduce the rate of positive CRM for patients with low rectal cancer, thereby improving oncological outcome. Methods: A prospective registry-based study including all cases recorded on the international TaTME registry between July 2014 and January 2018 was performed. Endpoints were the incidence of, and predictive factors for, positive CRM. Univariate and multivariate logistic regressions were performed, and factors for positive CRM were then assessed by formulating a predictive model. Results: In total, 2653 patients undergoing TaTME for rectal cancer were included. The incidence of positive CRM was 107 (4.0%). In multivariate logistic regression analysis, a positive CRM after TaTME was significantly associated with tumors located up to 1 cm from the anorectal junction, anterior tumors, cT4 tumors, extra-mural venous invasion (EMVI), and threatened or involved CRM on baseline MRI (odds ratios 2.09, 1.66, 1.93, 1.94, and 1.72, respectively). The predictive model showed adequate discrimination (area under the receiver-operating characteristic curve &gt;0.70), and predicted a 28% risk of positive CRM if all risk factors were present. Conclusion: Five preoperative tumor-related characteristics had an adverse effect on CRM involvement after TaTME. The predicted risk of positive CRM after TaTME for a specific patient can be calculated preoperatively with the proposed model and may help guide patient selection for optimal treatment and enhance a tailored treatment approach to further optimize oncological outcomes
    corecore