9,559 research outputs found

    Consequences of the Factorization Hypothesis in pbar p, pp, gamma p and gamma gamma Collisions

    Full text link
    Using an eikonal analysis, we examine the validity of the factorization theorem for nucleon-nucleon, gamma p and gamma gamma collisions. As an example, using the additive quark model and meson vector dominance, we directly show that for all energies and values of the eikonal, that the factorization theorem sigma_{nn}/sigma_{gamma p} = sigma_{gamma p}/sigma_{gamma gamma} holds. We can also compute the survival probability of large rapidity gaps in high energy pbar p and pp collisions. We show that the survival probabilities are identical (at the same energy) for gamma p and gamma gamma collisions, as well as for nucleon-nucleon collisions. We further show that neither the factorization theorem nor the reaction-independence of the survival probabilities depends on the assumption of an additive quark model, but, more generally, depends on the opacity of the eikonal being independent of whether the reaction is n-n, gamma p or gamma gamma.Comment: 8 pages, Revtex, no figures. Expanded discussion, minor correction

    The High Energy Behavior of the Forward Scattering Parameters---An Amplitude Analysis Update

    Get PDF
    Utilizing the most recent experimental data, we reanalyze high energy \pbar p and pp data, using the asymptotic amplitude analysis, under the assumption that we have reached `asymptopia'. This analysis gives strong evidence for a log(s/s0)\log \,(s/s_0) dependence at {\em current} energies and {\em not} log2(s/s0)\log^2 (s/s_0), and also demonstrates that odderons are {\em not} necessary to explain the experimental data.Comment: 7 pages in LaTeX, 4 figures and 5 files, uuencoded in file "sigall.uu

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars

    Controlling surface morphologies by time-delayed feedback

    Full text link
    We propose a new method to control the roughness of a growing surface, via a time-delayed feedback scheme. As an illustration, we apply this method to the Kardar-Parisi-Zhang equation in 1+1 dimensions and show that the effective growth exponent of the surface width can be stabilized at any desired value in the interval [0.25,0.33], for a significant length of time. The method is quite general and can be applied to a wide range of growth phenomena. A possible experimental realization is suggested.Comment: 4 pages, 3 figure

    A new approach to calculate the gluon polarization

    Full text link
    We derive the Leading-Order master equation to extract the polarized gluon distribution G(x;Q^2) = x \deltag(x;Q^2) from polarized proton structure function, g1p(x;Q^2). By using a Laplace-transform technique, we solve the master equation and derive the polarized gluon distribution inside the proton. The test of accuracy which are based on our calculations with two different methods confirms that we achieve to the correct solution for the polarized gluon distribution. We show that accurate experimental knowledge of g1p(x;Q^2) in a region of Bjorken x and Q^2, is all that is needed to determine the polarized gluon distribution in that region. Therefore, to determine the gluon polarization \deltag /g,we only need to have accurate experimental data on un-polarized and polarized structure functions (F2p (x;Q^2) and g1p(x;Q^2)).Comment: 12 pages, 5 figure

    Analytic models and forward scattering from accelerator to cosmic-ray energies

    Full text link
    Analytic models for hadron-hadron scattering are characterized by analytical parametrizations for the forward amplitudes and the use of dispersion relation techniques to study the total cross section σtot\sigma_{tot} and the ρ\rho parameter. In this paper we investigate four aspects related to the application of the model to pppp and pˉp\bar{p}p scattering, from accelerator to cosmic-ray energies: 1) the effect of different estimations for σtot\sigma_{tot} from cosmic-ray experiments; 2) the differences between individual and global (simultaneous) fits to σtot\sigma_{tot} and ρ\rho; 3) the role of the subtraction constant in the dispersion relations; 4) the effect of distinct asymptotic inputs from different analytic models. This is done by using as a framework the single Pomeron and the maximal Odderon parametrizations for the total cross section. Our main conclusions are the following: 1) Despite the small influence from different cosmic-ray estimations, the results allow us to extract an upper bound for the soft pomeron intercept: 1+ϵ=1.0941 + \epsilon = 1.094; 2) although global fits present good statistical results, in general, this procedure constrains the rise of σtot\sigma_{tot}; 3) the subtraction constant as a free parameter affects the fit results at both low and high energies; 4) independently of the cosmic-ray information used and the subtraction constant, global fits with the odderon parametrization predict that, above s70\sqrt s \approx 70 GeV, ρpp(s)\rho_{pp}(s) becomes greater than ρpˉp(s)\rho_{\bar{p}p}(s), and this result is in complete agreement with all the data presently available. In particular, we infer ρpp=0.134±0.005\rho_{pp} = 0.134 \pm 0.005 at s=200\sqrt s = 200 GeV and 0.151±0.0070.151 \pm 0.007 at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to appear in Physical Review

    Uncovering Spiral Structure in Flocculent Galaxies

    Get PDF
    We present K'(2.1 micron) observations of four nearby flocculent spirals, which clearly show low-level spiral structure and suggest that kiloparsec-scale spiral structure is more prevalent in flocculent spirals than previously supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown to have regular, two-arm spiral structure to a radius of 4 kpc in the near infrared, with an arm-interarm contrast of 1.3. The spiral structure in all four galaxies is weaker than that in grand design galaxies. Taken in unbarred galaxies with no large, nearby companions, these data are consistent with the modal theory of spiral density waves, which maintains that density waves are intrinsic to the disk. As an alternative, mechanisms for driving spiral structure with non-axisymmetric perturbers are also discussed. These observations highlight the importance of near infrared imaging for exploring the range of physical environments in which large-scale dynamical processes, such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes). Accepted to Ap.J. Letters.(Figures now also available here, and from ftp://ftp.astro.umd.edu/pub/michele , in GIF format.
    corecore