12,123 research outputs found
The Elusive p-air Cross Section
For the \pbar p and systems, we have used all of the extensive data of
the Particle Data Group[K. Hagiwara {\em et al.} (Particle Data Group), Phys.
Rev. D 66, 010001 (2002).]. We then subject these data to a screening process,
the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate
``outliers'' that can skew a fit. With the ``Sieve'' algorithm, a
robust fit using a Lorentzian distribution is first made to all of the data to
sieve out abnormally high \delchi, the individual i point's
contribution to the total . The fits are then made to the
sieved data. We demonstrate that we cleanly discriminate between asymptotic
and behavior of total hadronic cross sections when we require
that these amplitudes {\em also} describe, on average, low energy data
dominated by resonances. We simultaneously fit real analytic amplitudes to the
``sieved'' high energy measurements of and total cross sections
and -values for GeV, while requiring that their asymptotic
fits smoothly join the the and total cross
sections at 4.0 GeV--again {\em both} in magnitude and slope. Our
results strongly favor a high energy fit, basically excluding a fit. Finally, we make a screened Glauber fit for the p-air cross section,
using as input our precisely-determined cross sections at cosmic ray
energies.Comment: 15 pages, 6 figures, 2 table,Paper delivered at c2cr2005 Conference,
Prague, September 7-13, 2005. Fig. 2 was missing from V1. V3 fixes all
figure
Consequences of the Factorization Hypothesis in pbar p, pp, gamma p and gamma gamma Collisions
Using an eikonal analysis, we examine the validity of the factorization
theorem for nucleon-nucleon, gamma p and gamma gamma collisions. As an example,
using the additive quark model and meson vector dominance, we directly show
that for all energies and values of the eikonal, that the factorization theorem
sigma_{nn}/sigma_{gamma p} = sigma_{gamma p}/sigma_{gamma gamma} holds. We can
also compute the survival probability of large rapidity gaps in high energy
pbar p and pp collisions. We show that the survival probabilities are identical
(at the same energy) for gamma p and gamma gamma collisions, as well as for
nucleon-nucleon collisions. We further show that neither the factorization
theorem nor the reaction-independence of the survival probabilities depends on
the assumption of an additive quark model, but, more generally, depends on the
opacity of the eikonal being independent of whether the reaction is n-n, gamma
p or gamma gamma.Comment: 8 pages, Revtex, no figures. Expanded discussion, minor correction
Analytic models and forward scattering from accelerator to cosmic-ray energies
Analytic models for hadron-hadron scattering are characterized by analytical
parametrizations for the forward amplitudes and the use of dispersion relation
techniques to study the total cross section and the
parameter. In this paper we investigate four aspects related to the application
of the model to and scattering, from accelerator to cosmic-ray
energies: 1) the effect of different estimations for from
cosmic-ray experiments; 2) the differences between individual and global
(simultaneous) fits to and ; 3) the role of the
subtraction constant in the dispersion relations; 4) the effect of distinct
asymptotic inputs from different analytic models. This is done by using as a
framework the single Pomeron and the maximal Odderon parametrizations for the
total cross section. Our main conclusions are the following: 1) Despite the
small influence from different cosmic-ray estimations, the results allow us to
extract an upper bound for the soft pomeron intercept: ;
2) although global fits present good statistical results, in general, this
procedure constrains the rise of ; 3) the subtraction constant as
a free parameter affects the fit results at both low and high energies; 4)
independently of the cosmic-ray information used and the subtraction constant,
global fits with the odderon parametrization predict that, above GeV, becomes greater than , and
this result is in complete agreement with all the data presently available. In
particular, we infer at GeV and
at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to
appear in Physical Review
Self-Consistent Response of a Galactic Disk to an Elliptical Perturbation Halo Potential
We calculate the self-consistent response of an axisymmetric galactic disk
perturbed by an elliptical halo potential of harmonic number m = 2, and obtain
the net disk ellipticity. Such a potential is commonly expected to arise due to
a galactic tidal encounter and also during the galaxy formation process. The
self-gravitational potential corresponding to the self-consistent,
non-axisymmetric density response of the disk is obtained by inversion of
Poisson equation for a thin disk. This response potential is shown to oppose
the perturbation potential, because physically the disk self-gravity resists
the imposed potential. This results in a reduction in the net ellipticity of
the perturbation halo potential in the disk plane. The reduction factor
denoting this decrease is independent of the strength of the perturbation
potential, and has a typical minimum value of 0.75 - 0.9 for a wide range of
galaxy parameters. The reduction is negligible at all radii for higher
harmonics (m > or = 3) of the halo potential. (abridged).Comment: 26 pages (LaTex- aastex style), 3 .eps figures. To appear in the
Astrophysical Journal, Vol. 542, Oct. 20, 200
New physics, the cosmic ray spectrum knee, and cross section measurements
We explore the possibility that a new physics interaction can provide an
explanation for the knee just above GeV in the cosmic ray spectrum. We
model the new physics modifications to the total proton-proton cross section
with an incoherent term that allows for missing energy above the scale of new
physics. We add the constraint that the new physics must also be consistent
with published cross section measurements, using cosmic ray observations,
an order of magnitude and more above the knee. We find that the rise in cross
section required at energies above the knee is radical. The increase in cross
section suggests that it may be more appropriate to treat the scattering
process in the black disc limit at such high energies. In this case there may
be no clean separation between the standard model and new physics contributions
to the total cross section. We model the missing energy in this limit and find
a good fit to the Tibet III cosmic ray flux data. We comment on testing the new
physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure
A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields
The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a
fundamental aspect of the Hubble galaxy classification system. This ``tuning
fork'' view was revised by de Vaucouleurs, whose classification volume
recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of
galaxies called the ``family''. However, the SA, SAB, and SB families are
purely visual judgments that can have little bearing on the actual bar strength
in a given galaxy. Until very recently, published bar judgments were based
exclusively on blue light images, where internal extinction or star formation
can either mask a bar completely or give the false impression of a bar in a
nonbarred galaxy. Near-infrared camera arrays, which principally trace the old
stellar populations in both normal and barred galaxies, now facilitate a
quantification of bar strength in terms of their gravitational potentials and
force fields. In this paper, we show that the maximum value, Qb, of the ratio
of the tangential force to the mean radial force is a quantitative measure of
the strength of a bar. Qb does not measure bar ellipticity or bar shape, but
rather depends on the actual forcing due to the bar embedded in its disk. We
show that a wide range of true bar strengths characterizes the category ``SB'',
while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of
bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar
classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30
pages + 3 figures); Figs. 1 and 3 are in color and are also available at
http://bama.ua.edu/~rbuta/bars
Artificial Brains and Hybrid Minds
The paper develops two related thought experiments exploring variations on an ‘animat’ theme. Animats are hybrid devices with both artificial and biological components. Traditionally, ‘components’ have been construed in concrete terms, as physical parts or constituent material structures. Many fascinating issues arise within this context of hybrid physical organization. However, within the context of functional/computational theories of mentality, demarcations based purely on material structure are unduly narrow. It is abstract functional structure which does the key work in characterizing the respective ‘components’ of thinking systems, while the ‘stuff’ of material implementation is of secondary importance. Thus the paper extends the received animat paradigm, and investigates some intriguing consequences of expanding the conception of bio-machine hybrids to include abstract functional and semantic structure. In particular, the thought experiments consider cases of mind-machine merger where there is no physical Brain-Machine Interface: indeed, the material human body and brain have been removed from the picture altogether. The first experiment illustrates some intrinsic theoretical difficulties in attempting to replicate the human mind in an alternative material medium, while the second reveals some deep conceptual problems in attempting to create a form of truly Artificial General Intelligence
Dust penetrated morphology in the high redshift Universe
Images from the Hubble Deep Field (HDF) North and South show a large
percentage of dusty, high redshift galaxies whose appearance falls outside
traditional classification systems. The nature of these objects is not yet
fully understood. Since the HDF preferentially samples restframe UV light, HDF
morphologies are not dust or `mask' penetrated. The appearance of high redshift
galaxies at near-infrared restframes remains a challenge for the New
Millennium. The Next Generation Space Telescope (NGST) could routinely provide
us with such images. In this contribution, we quantitatively determine the
dust-penetrated structures of high redshift galaxies such as NGC 922 in their
near-infrared restframes. We show that such optically peculiar objects may
readily be classified using the dust penetrated z ~ 0 templates of Block and
Puerari (1999) and Buta and Block (2001).Comment: 4 pages, 2 figures. Presented at the conference "The Link between
Stars and Cosmology", 26-30 March, 2001, Puerto Vallarta, Mexico. To be
published by Kluwer, eds. M. Chavez, A. Bressan, A. Buzzoni, and D. Mayya.
High-resolution version of Figure 2 can be found at
http://www.inaoep.mx/~puerari/conf_puertovallart
Survival Probability of Large Rapidity Gaps in pbar p, pp, gamma p and gamma gamma Collisions
Using an eikonal analysis, we simultaneously fit a QCD-inspired
parameterization of all accelerator data on forward proton-proton and
antiproton-proton scattering amplitudes, together with cosmic ray data (using
Glauber theory), to predict proton-air and proton-proton cross sections at
energies near \sqrt s \approx 30 TeV. The p-air cosmic ray measurements greatly
reduce the errors in the high energy proton-proton and proton-air cross section
predictions--in turn, greatly reducing the errors in the fit parameters. From
this analysis, we can then compute the survival probability of rapidity gaps in
high energy pbar p and pp collisions, with high accuracy in a quasi model-free
environment. Using an additive quark model and vector meson dominance, we note
that that the survival probabilities are identical, at the same energy, for
gamma p and gamma gamma collisions, as well as for nucleon-nucleon collisions.
Significantly, our analysis finds large values for gap survival probabilities,
\approx 30% at \sqrt s = 200 GeV, \approx 21% at \sqrt s = 1.8 TeV and \approx
%%13% at \sqrt s = 14 TeV.Comment: 9 pages, Latex2e, uses epsfig.sty, 4 postscript figure
- …