12,123 research outputs found

    The Elusive p-air Cross Section

    Full text link
    For the \pbar p and pppp systems, we have used all of the extensive data of the Particle Data Group[K. Hagiwara {\em et al.} (Particle Data Group), Phys. Rev. D 66, 010001 (2002).]. We then subject these data to a screening process, the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate ``outliers'' that can skew a χ2\chi^2 fit. With the ``Sieve'' algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high \delchi, the individual ith^{\rm th} point's contribution to the total χ2\chi^2. The χ2\chi^2 fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic lns\ln s and ln2s\ln^2s behavior of total hadronic cross sections when we require that these amplitudes {\em also} describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the ``sieved'' high energy measurements of pˉp\bar p p and pppp total cross sections and ρ\rho-values for s6\sqrt s\ge 6 GeV, while requiring that their asymptotic fits smoothly join the the σpˉp\sigma_{\bar p p} and σpp\sigma_{pp} total cross sections at s=\sqrt s=4.0 GeV--again {\em both} in magnitude and slope. Our results strongly favor a high energy ln2s\ln^2s fit, basically excluding a lns\ln s fit. Finally, we make a screened Glauber fit for the p-air cross section, using as input our precisely-determined pppp cross sections at cosmic ray energies.Comment: 15 pages, 6 figures, 2 table,Paper delivered at c2cr2005 Conference, Prague, September 7-13, 2005. Fig. 2 was missing from V1. V3 fixes all figure

    Consequences of the Factorization Hypothesis in pbar p, pp, gamma p and gamma gamma Collisions

    Full text link
    Using an eikonal analysis, we examine the validity of the factorization theorem for nucleon-nucleon, gamma p and gamma gamma collisions. As an example, using the additive quark model and meson vector dominance, we directly show that for all energies and values of the eikonal, that the factorization theorem sigma_{nn}/sigma_{gamma p} = sigma_{gamma p}/sigma_{gamma gamma} holds. We can also compute the survival probability of large rapidity gaps in high energy pbar p and pp collisions. We show that the survival probabilities are identical (at the same energy) for gamma p and gamma gamma collisions, as well as for nucleon-nucleon collisions. We further show that neither the factorization theorem nor the reaction-independence of the survival probabilities depends on the assumption of an additive quark model, but, more generally, depends on the opacity of the eikonal being independent of whether the reaction is n-n, gamma p or gamma gamma.Comment: 8 pages, Revtex, no figures. Expanded discussion, minor correction

    Analytic models and forward scattering from accelerator to cosmic-ray energies

    Full text link
    Analytic models for hadron-hadron scattering are characterized by analytical parametrizations for the forward amplitudes and the use of dispersion relation techniques to study the total cross section σtot\sigma_{tot} and the ρ\rho parameter. In this paper we investigate four aspects related to the application of the model to pppp and pˉp\bar{p}p scattering, from accelerator to cosmic-ray energies: 1) the effect of different estimations for σtot\sigma_{tot} from cosmic-ray experiments; 2) the differences between individual and global (simultaneous) fits to σtot\sigma_{tot} and ρ\rho; 3) the role of the subtraction constant in the dispersion relations; 4) the effect of distinct asymptotic inputs from different analytic models. This is done by using as a framework the single Pomeron and the maximal Odderon parametrizations for the total cross section. Our main conclusions are the following: 1) Despite the small influence from different cosmic-ray estimations, the results allow us to extract an upper bound for the soft pomeron intercept: 1+ϵ=1.0941 + \epsilon = 1.094; 2) although global fits present good statistical results, in general, this procedure constrains the rise of σtot\sigma_{tot}; 3) the subtraction constant as a free parameter affects the fit results at both low and high energies; 4) independently of the cosmic-ray information used and the subtraction constant, global fits with the odderon parametrization predict that, above s70\sqrt s \approx 70 GeV, ρpp(s)\rho_{pp}(s) becomes greater than ρpˉp(s)\rho_{\bar{p}p}(s), and this result is in complete agreement with all the data presently available. In particular, we infer ρpp=0.134±0.005\rho_{pp} = 0.134 \pm 0.005 at s=200\sqrt s = 200 GeV and 0.151±0.0070.151 \pm 0.007 at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to appear in Physical Review

    Self-Consistent Response of a Galactic Disk to an Elliptical Perturbation Halo Potential

    Get PDF
    We calculate the self-consistent response of an axisymmetric galactic disk perturbed by an elliptical halo potential of harmonic number m = 2, and obtain the net disk ellipticity. Such a potential is commonly expected to arise due to a galactic tidal encounter and also during the galaxy formation process. The self-gravitational potential corresponding to the self-consistent, non-axisymmetric density response of the disk is obtained by inversion of Poisson equation for a thin disk. This response potential is shown to oppose the perturbation potential, because physically the disk self-gravity resists the imposed potential. This results in a reduction in the net ellipticity of the perturbation halo potential in the disk plane. The reduction factor denoting this decrease is independent of the strength of the perturbation potential, and has a typical minimum value of 0.75 - 0.9 for a wide range of galaxy parameters. The reduction is negligible at all radii for higher harmonics (m > or = 3) of the halo potential. (abridged).Comment: 26 pages (LaTex- aastex style), 3 .eps figures. To appear in the Astrophysical Journal, Vol. 542, Oct. 20, 200

    New physics, the cosmic ray spectrum knee, and pppp cross section measurements

    Full text link
    We explore the possibility that a new physics interaction can provide an explanation for the knee just above 10610^6 GeV in the cosmic ray spectrum. We model the new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pppp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars

    Artificial Brains and Hybrid Minds

    Get PDF
    The paper develops two related thought experiments exploring variations on an ‘animat’ theme. Animats are hybrid devices with both artificial and biological components. Traditionally, ‘components’ have been construed in concrete terms, as physical parts or constituent material structures. Many fascinating issues arise within this context of hybrid physical organization. However, within the context of functional/computational theories of mentality, demarcations based purely on material structure are unduly narrow. It is abstract functional structure which does the key work in characterizing the respective ‘components’ of thinking systems, while the ‘stuff’ of material implementation is of secondary importance. Thus the paper extends the received animat paradigm, and investigates some intriguing consequences of expanding the conception of bio-machine hybrids to include abstract functional and semantic structure. In particular, the thought experiments consider cases of mind-machine merger where there is no physical Brain-Machine Interface: indeed, the material human body and brain have been removed from the picture altogether. The first experiment illustrates some intrinsic theoretical difficulties in attempting to replicate the human mind in an alternative material medium, while the second reveals some deep conceptual problems in attempting to create a form of truly Artificial General Intelligence

    Dust penetrated morphology in the high redshift Universe

    Full text link
    Images from the Hubble Deep Field (HDF) North and South show a large percentage of dusty, high redshift galaxies whose appearance falls outside traditional classification systems. The nature of these objects is not yet fully understood. Since the HDF preferentially samples restframe UV light, HDF morphologies are not dust or `mask' penetrated. The appearance of high redshift galaxies at near-infrared restframes remains a challenge for the New Millennium. The Next Generation Space Telescope (NGST) could routinely provide us with such images. In this contribution, we quantitatively determine the dust-penetrated structures of high redshift galaxies such as NGC 922 in their near-infrared restframes. We show that such optically peculiar objects may readily be classified using the dust penetrated z ~ 0 templates of Block and Puerari (1999) and Buta and Block (2001).Comment: 4 pages, 2 figures. Presented at the conference "The Link between Stars and Cosmology", 26-30 March, 2001, Puerto Vallarta, Mexico. To be published by Kluwer, eds. M. Chavez, A. Bressan, A. Buzzoni, and D. Mayya. High-resolution version of Figure 2 can be found at http://www.inaoep.mx/~puerari/conf_puertovallart

    Survival Probability of Large Rapidity Gaps in pbar p, pp, gamma p and gamma gamma Collisions

    Full text link
    Using an eikonal analysis, we simultaneously fit a QCD-inspired parameterization of all accelerator data on forward proton-proton and antiproton-proton scattering amplitudes, together with cosmic ray data (using Glauber theory), to predict proton-air and proton-proton cross sections at energies near \sqrt s \approx 30 TeV. The p-air cosmic ray measurements greatly reduce the errors in the high energy proton-proton and proton-air cross section predictions--in turn, greatly reducing the errors in the fit parameters. From this analysis, we can then compute the survival probability of rapidity gaps in high energy pbar p and pp collisions, with high accuracy in a quasi model-free environment. Using an additive quark model and vector meson dominance, we note that that the survival probabilities are identical, at the same energy, for gamma p and gamma gamma collisions, as well as for nucleon-nucleon collisions. Significantly, our analysis finds large values for gap survival probabilities, \approx 30% at \sqrt s = 200 GeV, \approx 21% at \sqrt s = 1.8 TeV and \approx %%13% at \sqrt s = 14 TeV.Comment: 9 pages, Latex2e, uses epsfig.sty, 4 postscript figure
    corecore