18,067 research outputs found

    Phases of lattice hard core bosons in a periodic superlattice

    Full text link
    We study by Quantum Monte Carlo simulations the phase diagram of lattice hard core bosons with nearest-neighbour repulsive interactions, in the presence of a super-lattice of adsorption sites. For a moderate adsorption strength, the system forms crystal phases registered with the adsorption lattice; a "supersolid" phase exists, on both the vacancy and interstitial sides, whereas at commensuration the superfluid density vanishes. The possible relevance of these results to experiments on 4^4He films adsorbed on graphite is discussed.Comment: 5 pages, 5 figure

    Vitronectin at sites of cell-substrate contact in cultures of rat myotubes

    Get PDF
    Affinity-purified antibodies to the serum glycoprotein, vitronectin, were used to study sites of cell-substrate contact in cultures of rat myotubes and fibroblasts. Cells were removed from the substrate by treatment with saponin, leaving fragments of plasma membrane attached to the glass coverslip. When stained for vitronectin by indirect immunofluorescence, large areas of the substrate were brightly labeled. The focal contacts of fibroblasts and the broad adhesion plaques of myotubes appeared black, however, indicating that the antibodies had failed to react with those areas. Contact sites within the adhesion plaque remained unlabeled after saponin-treated samples were extracted with Triton X-100, or after intact cultures were sheared with a stream of fixative. These procedures expose extracellular macromolecules at the cell-substrate interface, which can then be labeled with concanavalin A. In contrast, when samples were sheared and then sonicated to remove all the cellular material from the coverslip, the entire substrate labeled extensively and almost uniformly with anti- vitronectin. Extracellular molecules associated with substrate contacts were also studied after freeze-fracture, using a technique we term "post-release fracture labeling." Platinum replicas of the external membrane were removed from the glass with hydrofluoric acid to expose the extracellular material. Anti-vitronectin, bound to the replicas and visualized by a second antibody conjugated to colloidal gold, labeled the broad areas of close myotube-substrate attachment and the nearby glass equally well. Our results are consistent with the hypothesis that vitronectin is present at all sites of cell-substrate contact, but that its antigenic sites are obscured by material deposited by both myotube and fibroblast cells

    Finite Controllability of Infinite-Dimensional Quantum Systems

    Full text link
    Quantum phenomena of interest in connection with applications to computation and communication almost always involve generating specific transfers between eigenstates, and their linear superpositions. For some quantum systems, such as spin systems, the quantum evolution equation (the Schr\"{o}dinger equation) is finite-dimensional and old results on controllability of systems defined on on Lie groups and quotient spaces provide most of what is needed insofar as controllability of non-dissipative systems is concerned. However, in an infinite-dimensional setting, controlling the evolution of quantum systems often presents difficulties, both conceptual and technical. In this paper we present a systematic approach to a class of such problems for which it is possible to avoid some of the technical issues. In particular, we analyze controllability for infinite-dimensional bilinear systems under assumptions that make controllability possible using trajectories lying in a nested family of pre-defined subspaces. This result, which we call the Finite Controllability Theorem, provides a set of sufficient conditions for controllability in an infinite-dimensional setting. We consider specific physical systems that are of interest for quantum computing, and provide insights into the types of quantum operations (gates) that may be developed.Comment: This is a much improved version of the paper first submitted to the arxiv in 2006 that has been under review since 2005. A shortened version of this paper has been conditionally accepted for publication in IEEE Transactions in Automatic Control (2009

    Method and apparatus for fabricating improved solar cell modules

    Get PDF
    A method and apparatus for fabricating an improved solar cell module is described. The apparatus includes a supply drum for feeding a flexible strip having etched electrical circuitry deposited on it a supply drum for feeding into overlying engagement with the flexible strip a flexible tape having a pair of exposed tacky surfaces, and a plurality of rams for receiving and depositing a plurality of solar cells in side-by-side relation on an exposed tacky surface of the tape in electrical contacting engagement with the etched circuitry

    Collapse and Revival of the Matter Wave Field of a Bose-Einstein Condensate

    Full text link
    At the heart of a Bose-Einstein condensate lies its description as a single giant matter wave. Such a Bose-Einstein condensate represents the most "classical" form of a matter wave, just as an optical laser emits the most classical form of an electromagnetic wave. Beneath this giant matter wave, however, the discrete atoms represent a crucial granularity, i.e. a quantization of this matter wave field. Here we show experimentally that this quantization together with the cold collisions between atoms lead to a series of collapses and revivals of the coherent matter wave field of a Bose-Einstein condensate. We observe such collapses and revivals directly in the dynamical evolution of a multiple matter wave interference pattern, and thereby demonstrate a striking new behaviour of macroscopic quantum matter

    Restricted Discrete Invariance and Self-Synchronization For Stable Walking of Bipedal Robots

    Full text link
    Models of bipedal locomotion are hybrid, with a continuous component often generated by a Lagrangian plus actuators, and a discrete component where leg transfer takes place. The discrete component typically consists of a locally embedded co-dimension one submanifold in the continuous state space of the robot, called the switching surface, and a reset map that provides a new initial condition when a solution of the continuous component intersects the switching surface. The aim of this paper is to identify a low-dimensional submanifold of the switching surface, which, when it can be rendered invariant by the closed-loop dynamics, leads to asymptotically stable periodic gaits. The paper begins this process by studying the well-known 3D Linear Inverted Pendulum (LIP) model, where analytical results are much easier to obtain. A key contribution here is the notion of \textit{self-synchronization}, which refers to the periods of the pendular motions in the sagittal and frontal planes tending to a common period. The notion of invariance resulting from the study of the 3D LIP model is then extended to a 9-DOF 3D biped. A numerical study is performed to illustrate that asymptotically stable walking may be obtained.Comment: Conferenc

    Competing superfluid and density-wave ground-states of fermionic mixtures with mass imbalance in optical lattices

    Full text link
    We study the effect of mass imbalance on the phase diagram of a two-component fermionic mixture with attractive interactions in optical lattices. Using static and dynamical mean-field theories, we show that the pure superfluid phase is stable for all couplings when the mass imbalance is smaller than a limiting value. For larger imbalance, phase separation between a superfluid and a charge-density wave takes place when the coupling exceeds a critical strength. The harmonic trap induces a spatial segregation of the two phases, with a rapid variation of the density at the boundary.Comment: e.g.:4 pages, 3 figure
    corecore