17,572 research outputs found

    A subset solution to the sign problem in random matrix simulations

    Full text link
    We present a solution to the sign problem in dynamical random matrix simulations of a two-matrix model at nonzero chemical potential. The sign problem, caused by the complex fermion determinants, is solved by gathering the matrices into subsets, whose sums of determinants are real and positive even though their cardinality only grows linearly with the matrix size. A detailed proof of this positivity theorem is given for an arbitrary number of fermion flavors. We performed importance sampling Monte Carlo simulations to compute the chiral condensate and the quark number density for varying chemical potential and volume. The statistical errors on the results only show a mild dependence on the matrix size and chemical potential, which confirms the absence of sign problem in the subset method. This strongly contrasts with the exponential growth of the statistical error in standard reweighting methods, which was also analyzed quantitatively using the subset method. Finally, we show how the method elegantly resolves the Silver Blaze puzzle in the microscopic limit of the matrix model, where it is equivalent to QCD.Comment: 18 pages, 11 figures, as published in Phys. Rev. D; added references; in Sec. VB: added discussion of model satisfying the Silver Blaze for all N (proof in Appendix E

    An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow

    Get PDF
    In this paper we consider the Hamiltonian formulation of the equations of incompressible ideal fluid flow from the point of view of optimal control theory. The equations are compared to the finite symmetric rigid body equations analyzed earlier by the authors. We discuss various aspects of the Hamiltonian structure of the Euler equations and show in particular that the optimal control approach leads to a standard formulation of the Euler equations -- the so-called impulse equations in their Lagrangian form. We discuss various other aspects of the Euler equations from a pedagogical point of view. We show that the Hamiltonian in the maximum principle is given by the pairing of the Eulerian impulse density with the velocity. We provide a comparative discussion of the flow equations in their Eulerian and Lagrangian form and describe how these forms occur naturally in the context of optimal control. We demonstrate that the extremal equations corresponding to the optimal control problem for the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE Conference on Decision and Contro

    On one example and one counterexample in counting rational points on graph hypersurfaces

    Full text link
    In this paper we present a concrete counterexample to the conjecture of Kontsevich about the polynomial countability of graph hypersurfaces. In contrast to this, we show that the "wheel with spokes" graphs WSnWS_n are polynomially countable

    Geometrically constrained magnetic wall

    Full text link
    The structure and properties of a geometrically constrained magnetic wall in a constriction separating two wider regions are investigated theoretically. They are shown to differconsiderably from those of an unconstrained wall, so that the geometrically constrained magnetic wall truly constitutes a new kind of magnetic wall, besides the well known Bloch and Neel walls. In particular, the width of a constrained wall cann become very small if the characteristic length of the constriction is small, as is actually the case in an atomic point contact. This provides a simple, natural explanation for the large magnetoresistance observed in ferromagnetic atomic point contacts.Comment: RevTeX, 4 pages, 4 eps figures; v2: revised version; v3: ref. adde

    Isentropic Curves at Magnetic Phase Transitions

    Full text link
    Experiments on cold atom systems in which a lattice potential is ramped up on a confined cloud have raised intriguing questions about how the temperature varies along isentropic curves, and how these curves intersect features in the phase diagram. In this paper, we study the isentropic curves of two models of magnetic phase transitions- the classical Blume-Capel Model (BCM) and the Fermi Hubbard Model (FHM). Both Mean Field Theory (MFT) and Monte Carlo (MC) methods are used. The isentropic curves of the BCM generally run parallel to the phase boundary in the Ising regime of low vacancy density, but intersect the phase boundary when the magnetic transition is mainly driven by a proliferation of vacancies. Adiabatic heating occurs in moving away from the phase boundary. The isentropes of the half-filled FHM have a relatively simple structure, running parallel to the temperature axis in the paramagnetic phase, and then curving upwards as the antiferromagnetic transition occurs. However, in the doped case, where two magnetic phase boundaries are crossed, the isentrope topology is considerably more complex

    A pulsed atomic soliton laser

    Full text link
    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a non-dispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure

    Graph hypersurfaces and a dichotomy in the Grothendieck ring

    Get PDF
    The subring of the Grothendieck ring of varieties generated by the graph hypersurfaces of quantum field theory maps to the monoid ring of stable birational equivalence classes of varieties. We show that the image of this map is the copy of Z generated by the class of a point. Thus, the span of the graph hypersurfaces in the Grothendieck ring is nearly killed by setting the Lefschetz motive L to zero, while it is known that graph hypersurfaces generate the Grothendieck ring over a localization of Z[L] in which L becomes invertible. In particular, this shows that the graph hypersurfaces do not generate the Grothendieck ring prior to localization. The same result yields some information on the mixed Hodge structures of graph hypersurfaces, in the form of a constraint on the terms in their Deligne-Hodge polynomials.Comment: 8 pages, LaTe
    • …
    corecore