45 research outputs found

    An overview of the Upper Paleozoic-Mesozoic stratigraphy of the NE Atlantic region

    Get PDF
    This study describes the distribution and stratigraphic range of the Upper Paleozoic–Mesozoic succession in the NE Atlantic region, and is correlated between conjugate-margins and along the axis of the NE Atlantic rift system. The stratigraphic framework has yielded important new constraints on the timing and nature of sedimentary basin development in the NE Atlantic, with implications for rifting and the breakup of the Pangaean supercontinent. From a regional perspective, the Permian–Triassic succession records a northward transition from an arid interior to a passively-subsiding, mixed carbonate/siliciclastic shelf margin. A Late Permian–earliest Triassic rift pulse has regional expression in the stratigraphic record. A fragmentary paralic to shallow-marine Lower Jurassic succession reflects Early Jurassic thermal subsidence and mild extensional tectonism; this was interrupted by widespread Mid-Jurassic uplift and erosion, and followed by an intense phase of Late Jurassic rifting in some (but not all) parts of the NE Atlantic region. The Cretaceous succession is dominated by thick basinal-marine deposits, which accumulated within and along a broad zone of extension and subsidence between Rockall and NE Greenland. There is no evidence for a substantive and continuous rift system along the proto-NE Atlantic until the Late Cretaceous

    Panel Discussion on Assessment of the Performance of Warranties

    No full text

    Three-Way and Higher-Order Crossed Classifications

    No full text

    The Jan Mayen microcontinent: an update of its architecture, structural development and role during the transition from the Ægir Ridge to the mid-oceanic Kolbeinsey Ridge

    No full text
    We present a revised tectonostratigraphy of the Jan Mayen microcontinent (JMMC) and its southern extent, with the focus on its relationship to the Greenland–Iceland–Faroe Ridge area and the Faroe–Iceland Fracture Zone. The microcontinent's Cenozoic evolution consists of six main phases corresponding to regional stratigraphic unconformities. Emplacement of Early Eocene plateau basalts at pre-break-up time (56–55 Ma), preceded the continental break-up (55 Ma) and the formation of seawards-dipping reflectors (SDRs) along the eastern and SE flanks of the JMMC. Simultaneously with SDR formation, orthogonal seafloor spreading initiated along the Ægir Ridge (Norway Basin) during the Early Eocene (C24n2r, 53.36 Ma to C22n, 49.3 Ma). Changes in plate motions at C21n (47.33 Ma) led to oblique seafloor spreading offset by transform faults and uplift along the microcontinent's southern flank. At C13n (33.2 Ma), spreading rates along the Ægir Ridge started to decrease, first south and then in the north. This was probably complemented by intra-continental extension within the JMMC, as indicated by the opening of the Jan Mayen Basin – a series of small pull-apart basins along the microcontinent's NW flank. JMMC was completely isolated when the mid-oceanic Kolbeinsey Ridge became fully established and the Ægir Ridge was abandoned between C7 and C6b (24–21.56 Ma)
    corecore