9,534 research outputs found

    2-aminoaethanesulfonic acid compounds possess protective property in reperfusion-induced heart jnjury

    Get PDF
    The study aim was to explore pharmacological effects of 2-aminoaethansulfonic acid compounds in reperfusion-induced heart injury. The study was performed on rats and dogs of both sexes, isolated rats’ hearts. Two compounds of 2-aminoethanesulfonic acid, magnesium-containing (LBK-527) and phenylacetamide-containing (LKhT-317) were investigate

    Search for AGN counterparts of unidentified Fermi-LAT sources with optical polarimetry: Demonstration of the technique

    Get PDF
    The third Fermi-LAT catalog (3FGL) presented the data of the first four years of observations from the Fermi Gamma-ray Space Telescope mission. There are 3034 sources, 1010 of which still remain unidentified. Identifying and classifying gamma-ray emitters is of high significance with regard to studying high-energy astrophysics. We demonstrate that optical polarimetry can be an advantageous and practical tool in the hunt for counterparts of the unidentified gamma-ray sources (UGSs). Using data from the RoboPol project, we validated that a significant fraction of active galactic nuclei (AGN) associated with 3FGL sources can be identified due to their high optical polarization exceeding that of the field stars. We performed an optical polarimetric survey within 3σ3\sigma uncertainties of four unidentified 3FGL sources. We discovered a previously unknown extragalactic object within the positional uncertainty of 3FGL J0221.2+2518. We obtained its spectrum and measured a redshift of z=0.0609±0.0004z=0.0609\pm0.0004. Using these measurements and archival data we demonstrate that this source is a candidate counterpart for 3FGL J0221.2+2518 and most probably is a composite object: a star-forming galaxy accompanied by AGN. We conclude that polarimetry can be a powerful asset in the search for AGN candidate counterparts for unidentified Fermi sources. Future extensive polarimetric surveys at high galactic latitudes (e.g., PASIPHAE) will allow the association of a significant fraction of currently unidentified gamma-ray sources.Comment: accepted to A&

    Nuclear magnetic octupole moment and the hyperfine structure of the 5D3/2,5/25D_{3/2,5/2} states of the Ba+^+ ion

    Full text link
    The hyperfine structure of the long-lived 5D3/25D_{3/2} and 5D5/25D_{5/2} levels of Ba+^+ ion is analyzed. A procedure for extracting relatively unexplored nuclear magnetic moments Ω\Omega is presented. The relevant electronic matrix elements are computed in the framework of the ab initio relativistic many-body perturbation theory. Both the first- and the second-order (in the hyperfine interaction) corrections to the energy levels are analyzed. It is shown that a simultaneous measurement of the hyperfine structure of the entire 5DJ5D_J fine-structure manifold allows one to extract Ω\Omega without contamination from the second-order corrections. Measurements to the required accuracy should be possible with a single trapped barium ion using sensitive techniques already demonstrated in Ba+^+ experiments.Comment: Phys Rev A in pres

    Radio jet emission from GeV-emitting narrow-line Seyfert 1 galaxies

    Get PDF
    We studied the radio emission from four radio-loud and gamma-ray-loud narrow-line Seyfert 1 galaxies. The goal was to investigate whether a relativistic jet is operating at the source, and quantify its characteristics. We relied on the most systematic monitoring of such system in the cm and mm radio bands which is conducted with the Effelsberg 100 m and IRAM 30 m telescopes and covers the longest time-baselines and the most radio frequencies to date. We extract variability parameters and compute variability brightness temperatures and Doppler factors. The jet powers were computed from the light curves to estimate the energy output. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. All the sources display intensive variability that occurs at a pace faster than what is commonly seen in blazars. The flaring events show intensive spectral evolution indicative of shock evolution. The brightness temperatures and Doppler factors are moderate, implying a mildly relativistic jet. The computed jet powers show very energetic flows. The radio polarisation in one case clearly implies a quiescent jet underlying the recursive flaring activity. Despite the generally lower flux densities, the sources appear to show all typical characteristics seen in blazars that are powered by relativistic jets.Comment: Accepted for publication in 4 - Extragalactic astronomy of Astronomy and Astrophysic

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+ee^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266

    RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars

    Get PDF
    We use results of our 3 year polarimetric monitoring program to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by {\em RoboPol} is analysed together with the gamma-ray data provided by {\em Fermi}-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time scales of rotations and flares are marginally correlated.Comment: 12 pages, 16 figures, accepted to MNRA
    corecore