101 research outputs found

    Neutrino-Nucleus Reactions and Muon Capture in 12C

    Full text link
    The neutrino-nucleus cross section and the muon capture rate are discussed within a simple formalism which facilitates the nuclear structure calculations. The corresponding formulae only depend on four types of nuclear matrix elements, which are currently used in the nuclear beta decay. We have also considered the non-locality effects arising from the velocity-dependent terms in the hadronic current. We show that for both observables in 12C the higher order relativistic corrections are of the order of ~5 only, and therefore do not play a significant role. As nuclear model framework we use the projected QRPA (PQRPA) and show that the number projection plays a crucial role in removing the degeneracy between the proton-neutron two quasiparticle states at the level of the mean field. Comparison is done with both the experimental data and the previous shell model calculations. Possible consequences of the present study on the determination of the νμ>νe\nu_\mu ->\nu_e neutrino oscillation probability are briefly addressed.Comment: 29 pages, 6 figures, Revtex4. Several changes were made to the previous manuscript, the results and final conclusions remain unalterable. It has been accepted for publication as a Regular Article in Physical Review

    Time Reversal Invariance Violating and Parity Conserving effects in Neutron Deuteron Scattering

    Get PDF
    Time reversal invariance violating parity conserving effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of potentials in a Distorted Wave Born Approximation, using realistic hadronic wave functions, obtained by solving three-body Faddeev equations in configuration space.Comment: There was a technical mistake in calculations due to singular behavior of Yukawa functions at short range. We corrected the integration algorithm. There were some typos which are corrected. arXiv admin note: text overlap with arXiv:1104.305

    Isoscalar g Factors of Even-Even and Odd-Odd Nuclei

    Full text link
    We consider T=0 states in even-even and odd-odd N=Z nuclei. The g factors that emerge are isoscalar. We find that the single j shell model gives simple expressions for these g factors which for even-even nuclei are suprisingly close to the collective values for K=0 bands. The g factors of many 2+ in even-even nuclei and 1+ and 3+ states in odd-odd nuclei have g factors close to 0.5

    A new online database of nuclear electromagnetic moments

    Full text link
    Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non–evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed

    Isospin-mixing corrections for fp-shell Fermi transitions

    Get PDF
    Isospin-mixing corrections for superallowed Fermi transitions in {\it fp}-shell nuclei are computed within the framework of the shell model. The study includes three nuclei that are part of the set of nine accurately measured transitions as well as five cases that are expected to be measured in the future at radioactive-beam facilities. We also include some new calculations for 10^{10}C. With the isospin-mixing corrections applied to the nine accurately measured ftft values, the conserved-vector-current hypothesis and the unitarity condition of the Cabbibo-Kobayashi-Maskawa (CKM) matrix are tested.Comment: 13 pages plus five tables. revtex macro

    Magnetic moments of 33^{33}Mg in time-odd relativistic mean field approach

    Full text link
    The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground-state properties of 33^{33}Mg with effective interaction PK1. The ground state of 33^{33}Mg has been found to be prolate deformed, β2=0.23\beta_2=0.23, with the odd neutron in 1/2[330]1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV. The magnetic moment 0.9134μN- 0.9134 \mu_\mathrm{N} is obtained with the effective electromagnetic current which well reproduces the data 0.7456μN- 0.7456 \mu_\mathrm{N} self-consistently without introducing any parameter. The energy splittings of time reversal conjugate states, the neutron current, the energy contribution from the nuclear magnetic potential, and the effect of core polarization are discussed in detail.Comment: 13 pages, 4 figure

    Large-basis shell-model calculation of 10C->10B Fermi matrix element

    Full text link
    We use a 4Ω4\hbar\Omega shell-model calculation with a two-body effective interaction derived microscopically from the Reid93 potential to calculate the isospin-mixing correction for the 10C->10B superallowed Fermi transition. The effective interaction takes into account the Coulomb potential as well as the charge dependence of T=1 partial waves. Our results suggest the isospin- mixing correction δC0.1\delta_{C}\approx 0.1 %, which is compatible with previous calculations. The correction obtained in those calculations, performed in a 0Ω0\hbar\Omega space, was dominated by deviation from unity of the radial overlap between the converted proton and the corresponding neutron. In the present calculation this effect is accommodated by the large model space. The obtained δC\delta_{C} correction is about a factor of four too small to obtain unitarity of the Cabibbo-Kobayashi-Maskawa matrix with the present experimental data.Comment: 14 pages. REVTEX. 3 PostScript figure

    Parity nonconservation effects in the photodesintegration of polarized deuterons

    Get PDF
    P-odd correlations in the deuteron photodesintegration are considered. The π\pi-meson exchange is not operative in the case of unpolarized deuterons. For polarized deuterons a P-odd correlation due to the π\pi-meson exchange is about 3×1093 \times 10^{-9}. Short-distance P-odd contributions exceed essentially than the contribution of the π\pi-meson exchange.Comment: 12 pages, Latex, 3 figure

    Partially conserved axial current constraints on pion production/absorption within nonrelativistic dynamics

    Full text link
    We show the necessity of two-nucleon axial currents and associated pion emission/ absorption operators for the partial conservation of the axial current (PCAC) nuclear matrix elements with arbitrary nuclear dynamics described by a nonrelativistic Schroedinger equation. As examples we construct such nonrelativistic axial two-body currents in the linear- and heterotic (g_A = 1.26) sigma models, with an optional isoscalar vector (omega) meson exchange. The nuclear matrix elements obey PCAC only if the nuclear wave functions used in the calculation are solutions to the Schroedinger equation with the static one-meson-exchange potential constructed in the respective (sigma) model. The same holds true for the nucler pion production amplitude, since it is proportional to the divergence of the axial current matrix element, by virtue of PCAC. Thus we found a new consistency condition between the pion creation/absorption operator and the nuclear Hamiltonian. We present examples drawn from our models and discuss implications for one-pion-two-nucleon processes.Comment: 19 pages, 7 figures, submitted to Phys. Rev.

    Towards a Statistical Theory of Finite Systems and Compound States: Random Two-Body Interaction Approach

    Full text link
    The model of Fermi particles with random two-body interaction is investigated. This model allows to study the origin and accuracy of statistical laws in few-body systems, the role of interaction and chaos in thermalization, Fermi-Dirac distribution for quasi-particles with spreading widths, matrix elements of external field and enhancement of weak perturbation in chaotic compound states.Comment: 4 pages in RevTex and 2 Postscript figures; to appear in Phys.Rev.
    corecore