933 research outputs found
Determination of the complex microwave photoconductance of a single quantum dot
A small quantum dot containing approximately 20 electrons is realized in a
two-dimensional electron system of an AlGaAs/GaAs heterostructure. Conventional
transport and microwave spectroscopy reveal the dot's electronic structure. By
applying a coherently coupled two-source technique, we are able to determine
the complex microwave induced tunnel current. The amplitude of this
photoconductance resolves photon-assisted tunneling (PAT) in the non-linear
regime through the ground state and an excited state as well. The out-of-phase
component (susceptance) allows to study charge relaxation within the quantum
dot on a time scale comparable to the microwave beat period.Comment: 5.5 pages, 6 figures, accepted by Phys. Rev. B (Jan. B15 2001
Adiabatic steering and determination of dephasing rates in double dot qubits
We propose a scheme to prepare arbitrary superpositions of quantum states in
double quantum--dots irradiated by coherent microwave pulses. Solving the
equations of motion for the dot density matrix, we find that dephasing rates
for such superpositions can be quantitatively infered from additional electron
current pulses that appear due to a controllable breakdown of coherent
population trapping in the dots.Comment: 5 pages, 4 figures. To appear in Phys. Rev.
Adiabatic Transfer of Electrons in Coupled Quantum Dots
We investigate the influence of dissipation on one- and two-qubit rotations
in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with
adiabatically varying parameters. For weak dissipation, we solve a master
equation, compare with direct perturbation theory, and derive an expression for
the `fidelity loss' during a simple operation that adiabatically moves an
electron between two coupled dots. We discuss the possibility of visualizing
coherent quantum oscillations in electron `pump' currents, combining quantum
adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the
role of intermediate charge states has been discussed recently, we apply our
formalism to calculate the fidelity loss due to charge tunneling between two
dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.
Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons
We investigate the dynamics of a double quantum dot charge qubit which is
coupled to piezoelectric acoustic phonons, appropriate for GaAs
heterostructures. At low temperatures, the phonon bath induces a non-Markovian
dynamical behavior of the oscillations between the two charge states of the
double quantum dot. Upon applying the numerically exact quasiadiabatic
propagator path-integral scheme, the reduced density matrix of the charge qubit
is calculated, thereby avoiding the Born-Markov approximation. This allows a
systematic study of the dependence of the Q-factor on the lattice temperature,
on the size of the quantum dots, as well as on the interdot coupling. We
calculate the Q-factor for a recently realized experimental setup and find that
it is two orders of magnitudes larger than the measured value, indicating that
the decoherence due to phonons is a subordinate mechanism.Comment: 5 pages, 7 figures, replaced with the version to appear in Phys. Rev.
Single-electron quantum dot in Si/SiGe with integrated charge-sensing
Single-electron occupation is an essential component to measurement and
manipulation of spin in quantum dots, capabilities that are important for
quantum information processing. Si/SiGe is of interest for semiconductor spin
qubits, but single-electron quantum dots have not yet been achieved in this
system. We report the fabrication and measurement of a top-gated quantum dot
occupied by a single electron in a Si/SiGe heterostructure. Transport through
the quantum dot is directly correlated with charge-sensing from an integrated
quantum point contact, and this charge-sensing is used to confirm
single-electron occupancy in the quantum dot.Comment: 3 pages, 3 figures, accepted version, to appear in Applied Physics
Letter
Photon-Assisted Transport Through Ultrasmall Quantum Dots: Influence of Intradot Transitions
We study transport through one or two ultrasmall quantum dots with discrete
energy levels to which a time-dependent field is applied (e.g., microwaves).
The AC field causes photon-assisted tunneling and also transitions between
discrete energy levels of the dot. We treat the problem by introducing a
generalization of the rotating-wave approximation to arbitrarily many levels.
We calculate the dc-current through one dot and find satisfactory agreement
with recent experiments by Oosterkamp et al. . In addition, we propose a novel
electron pump consisting of two serially coupled single-level quantum dots with
a time-dependent interdot barrier.Comment: 16 pages, Revtex, 10 eps-figure
Nuclear spin relaxation probed by a single quantum dot
We present measurements on nuclear spin relaxation probed by a single quantum
dot in a high-mobility electron gas. Current passing through the dot leads to a
spin transfer from the electronic to the nuclear spin system. Applying electron
spin resonance the transfer mechanism can directly be tuned. Additionally, the
dependence of nuclear spin relaxation on the dot gate voltage is observed. We
find electron-nuclear relaxation times of the order of 10 minutes
Charge Sensing of an Artificial H2+ Molecule
We report charge detection studies of a lateral double quantum dot with
controllable charge states and tunable tunnel coupling. Using an integrated
electrometer, we characterize the equilibrium state of a single electron
trapped in the doubled-dot (artificial H2+ molecule) by measuring the average
occupation of one dot. We present a model where the electrostatic coupling
between the molecule and the sensor is taken into account explicitly. From the
measurements, we extract the temperature of the isolated electron and the
tunnel coupling energy. It is found that this coupling can be tuned between 0
and 60 micro electron-volt in our device.Comment: 5 pages, 4 figures. Revised version with added material. To be
published in Physical Review
Electron-hole bilayer quantum dots: Phase diagram and exciton localization
We studied a vertical ``quantum dot molecule'', where one of the dots is
occupied with electrons and the other with holes. We find that different phases
occur in the ground state, depending on the carrier density and the interdot
distance. When the system is dominated by shell structure, orbital degeneracies
can be removed either by Hund's rule, or by Jahn-Teller deformation. Both
mechanisms can lead to a maximum of the addition energy at mid-shell. At low
densities and large interdot distances, bound electron-hole pairs are formed.Comment: 10 pages, 3 figure
Quantum dots in Si/SiGe 2DEGs with Schottky top-gated leads
We report on the fabrication and characterization of quantum dot devices in a
Schottky-gated silicon/silicon-germanium two-dimensional electron gas (2DEG).
The dots are confined laterally inside an etch-defined channel, while their
potential is modulated by an etch-defined 2DEG gate in the plane of the dot.
For the first time in this material, Schottky top gates are used to define and
tune the tunnel barriers of the dot. The leakage current from the gates is
reduced by minimizing their active area. Further suppression of the leakage is
achieved by increasing the etch depth of the channel. The top gates are used to
put the dot into the Coulomb blockade regime, and conductance oscillations are
observed as the voltage on the side gate is varied.Comment: New Fig. 1, submitted to New Journal of Physic
- …
