369 research outputs found

    Serving Graduate Students at a Community College Library

    Get PDF
    Even though a community college library rarely attempts to offer the same depth of support found at a university, it can still serve the needs of local graduate students in two ways: through the library’s core collection of print and electronic resources, and through its on-site services, spaces, and librarian expertise. Graduate students need to know that these resources are available to them. The knowledge and ability of the librarian is key to supporting this patron group. This article is informed by the author’s experiences at the College of DuPage, a large comprehensive community college in northeastern Illinois

    Remote sensing and geologic studies of the orientale basin region

    Get PDF
    Both visual and near-infrared spectral observations are combined with multispectral imaging to study the Orientale interior and exterior, the Cruger region, Grimaldi Region, the Schiller-Schickard Region, and the Humorum Region of the Moon. It was concluded that anorthosites occur in the Inner Rook Mountains of Orientale, the inner ring of Grimaldi, and the main ring of Humorum. Imaging spectroscopy shows that the entire eastern Inner Rook Mountains are composed of anorthosites. Orientale ejecta are strikingly like the surface materials in the region where Apollo 16 landed. This similarity indicates similar mineralogy, i.e., noritic anorthosite. Thus, Orientile ejecta is more mafic than the Inner Rook Mountains. This situation is also true for the Nectaris, Humorum, and Gramaldi basins. Isolated areas of the Orientale region show the presence of gabbroic rocks, but, in general, Orientale ejecta are noritic anorthosites, which contain much more low-Ca pyroxene than high-Ca pyroxene. Ancient (pre-Orientale) mare volcanism apparently occurred in several areas of the western limb

    Craters Hosting Radar-Bright Deposits in Mercury's North Polar Region: Areas of Persistent Shadow Determined from MESSENGER Images

    Get PDF
    Radar-bright features near Mercury's poles were discovered in Earth-based radar images and proposed to be water ice present in permanently shadowed areas. Images from MESSENGER's one-year primary orbital mission provide the first nearly complete view of Mercury’s north polar region, as well as multiple images of the surface under a range of illumination conditions. We find that radar-bright features near Mercury's north pole are associated with locations persistently shadowed in MESSENGER images. Within 10 degrees of the pole, almost all craters larger than 10 km in diameter host radar-bright deposits. There are several craters located near Mercury's north pole with sufficiently large diameters to enable long-lived water ice to be thermally stable at the surface within regions of permanent shadow. Craters located farther south also host radar-bright deposits and show a preference for cold-pole longitudes; thermal models suggest that a thin insulating layer is required to cover these deposits if the radar-bright material consists predominantly of longlived water ice. Many small (less than 10 km diameter) and low-latitude (extending southward to 66 degrees N) craters host radar-bright material, and water ice may not be thermally stable in these craters for ~1 Gy, even beneath an insulating layer. The correlation of radar-bright features with persistently shadowed areas is consistent with the deposits being composed of water ice, and future thermal modeling of small and low-latitude craters has the potential to further constrain the nature, source, and timing of emplacement of the radar-bright material

    Mercury Exploration: Looking to the Future

    Get PDF
    Prior to the return of data from the NASA MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft], information relating to Mercury was limited. From the NASA Mariner 10 flybys, in 1974 and 1975, ~45% of the planet was imaged, its magnetic field was detected, H, He, and O in the exosphere were measured, and other physical characteristics of the planet were determined. Despite these data, much information about Mercury still had to be inferred. It was over 30 years before MESSENGER provided the first in-depth study of the innermost planet. Orbiting Mercury from 2011 to 2015, the MESSENGER spacecraft was able to image the entirety of the planet and thus provide the first global view of Mercury. Coupling multispectral images with data from MESSENGER geochemical instruments, we have developed a better understanding of the geochemical terranes on the planet and the unique nature of Mercurys composition compared to the other terrestrial planets. MESSENGER also provided data that have led to great advancements in understanding the internal structure, exosphere, and magnetosphere of Mercury. The treasure trove of MESSENGER data reveal Mercury as a geochemical end-member among the terrestrial planets. However, we are left with many questions that can only be answered with further exploration

    Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells

    Get PDF
    Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton-biexciton transition. It is found to be comparable to that of the exciton transition, indicating that the deformation potential interactions for the exciton and the exciton-biexciton transitions are comparable

    First mineralogical maps of 4 Vesta

    Get PDF
    Before Dawn arrived at 4 Vesta only very low spatial resolution (~50 km) albedo and color maps were available from HST data. Also ground-based color and spectroscopic data were utilized as a first attempt to map Vesta’s mineralogical diversity [1-4]. The VIR spectrometer [5] onboard Dawn has ac-quired hyperspectral data while the FC camera [6] ob-tained multi-color data of the Vestan surface at very high spatial resolutions, allowing us to map complex geologic, morphologic units and features. We here re-port about the results obtained from a preliminary global mineralogical map of Vesta, based on data from the Survey orbit. This map is part of an iterative map-ping effort; the map is refined with each improvement in resolution

    A Mercury Lander Mission Concept Study for the Next Decadal Survey

    Get PDF
    Mariner 10 provided our first closeup reconnaissance of Mercury during its three flybys in 1974 and 1975. MESSENGERs 20112015 orbital investigation enabled numerous discoveries, several of which led to substantial or complete changes in our fundamental understanding of the planet. Among these were the unanticipated, widespread presence of volatile elements (e.g., Na, K, S); a surface with extremely low Fe abundance whose darkening agent is likely C; a previously unknown landformhollows that may form by volatile sublimation from within rocks exposed to the harsh conditions on the surface; a history of expansive effusive and explosive volcanism; substantial radial contraction of the planet from interior cooling; offset of the dipole moment of the internal magnetic field northward from the geographic equator by ~20% of the planets radius; crustal magnetization, attributed at least in part to an ancient field; unexpected seasonal variability and relationships among exospheric species and processes; and the presence in permanently shadowed polar terrain of water ice and other volatile materials, likely to include complex organic compounds. Mercurys highly chemically reduced and unexpectedly volatile-rich composition is unique among the terrestrial planets and was not predicted by earlier hypotheses for the planets origin. As an end-member of terrestrial planet formation, Mercury holds unique clues about the original distribution of elements in the earliest stages of the Solar System and how planets (and exoplanets) form and evolve in close proximity to their host stars. The BepiColombo mission promises to expand our knowledge of this planet and to shed light on some of the mysteries revealed by the MESSENGER mission. However, several fundamental science questions raised by MESSENGERs pioneering exploration of Mercury can only be answered with in situ measurements from the planets surface

    Mapping Vesta: First Results from Dawn’s Survey Orbit

    Get PDF
    The geologic objectives of the Dawn Mission [1] are to derive Vesta’s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids’ origin and evolution.Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater sizefrequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase – the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of ~3000 km with a beta angle of 10°-15°
    • …
    corecore