1,000 research outputs found
Myeloid-derived suppressor cells: Ductile targets in disease
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with major regulatory functions and rise during pathological conditions, including cancer, infections and autoimmune conditions. MDSC expansion is generally linked to inflammatory processes that emerge in response to stable immunological stress, which alter both magnitude and quality of the myelopoietic output. Inability to reinstate physiological myelopoiesis would fall in an "emergency state" that perpetually reprograms myeloid cells toward suppressive functions. While differentiation and reprogramming of myeloid cells toward an immunosuppressive phenotype can be considered the result of a multistep process that originates in the bone marrow and culminates in the tumor microenvironment, the identification of its driving events may offer potential therapeutic approaches in different pathologies. Indeed, whereas expansion of MDSCs, in both murine and human tumor bearers, results in reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid cell reprogramming leading to generation of suppressive MDSCs and discuss their therapeutic ductility in disease
Study of the effects of pasteurization and selected microbial starters on functional traits of fermented table olives
Table olives are one of the most known fruit consumed as fermented food, being a fundamental component of the Mediterranean diet. Their production and consumption continue to increase globally and represent an important economic source for the producing countries. One of the most stimulating challenges for the future is the modernization of olive fermentation process. Besides the demand for more reproducible and safer production methods that could be able to reduce product losses and potential risks, producers and consumers are increasingly attracted by the final product characteristics and properties on human health. In this study, the contribution of microbial starters to table olives was fully described in terms of specific enzymatic and microbiological profiles, nutrient components, fermentation -derived compounds, and content of bioactive compounds. The use of microbial starters from different sources was tested considering their technological features and potential ability to improve the functional traits of fermented black table olives. For each fermentation assay, the effects of controlled temperature (kept at 20 degrees C constantly) versus not controlled environmental conditions (oscillating between 7 and 17 degrees C), as well as the consequences of the pasteurization treatment were tested on the final products. Starter -driven fermentation strategies seemed to increase both total phenolic content and total antioxidant activity. Herein, among all the tested microbial starters, we provide data indicating that two bacterial strains (Leuconostoc mesenteroides KT 5-1 and Lactiplantibacillus plantarum BC T3-35), and two yeast strains (Saccharomyces cerevisiae 10A and Debaryomyces hansenii A15-44) were the better ones related to enzyme activities, total phenolic content and antioxidant activity. We also demonstrated that the fermentation of black table olives under not controlled environmental temperature conditions was more promising than the controlled level of 20 degrees C constantly in terms of technological and functional properties considered in this study. Moreover, we confirmed that the pasteurization process had a role in enhancing the levels of antioxidant compounds
Atmospheric Calorimetry above 10 eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory
The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a
calorimeter to measure extensive air-showers created by particles of
astrophysical origin. Some of these particles carry joules of energy. At these
extreme energies, test beams are not available in the conventional sense. Yet
understanding the energy response of the observatory is important. For example,
the propagation distance of the highest energy cosmic-rays through the cosmic
microwave background radiation (CMBR) is predicted to be strong function of
energy. This paper will discuss recently reported results from the observatory
and the use of calibrated pulsed UV laser "test-beams" that simulate the
optical signatures of ultra-high energy cosmic rays. The status of the much
larger 200,000 km companion detector planned for the northern hemisphere
will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in
High Energy Physic
Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande
Recent results show that atmospheric oscillate with eV and , and that
conversion into is strongly disfavored. The Super-Kamiokande (SK)
collaboration, using a combination of three techniques, reports that their data
favor over . This distinction
is extremely important for both four-neutrino models and cosmology. We propose
that neutrino-proton elastic scattering () in water
\v{C}erenkov detectors can also distinguish between active and sterile
oscillations. This was not previously recognized as a useful channel since only
about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless,
in the present SK data there should be about 40 identifiable events. We show
that these events have unique particle identification characteristics, point in
the direction of the incoming neutrinos, and correspond to a narrow range of
neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be
particularly important in Hyper-Kamiokande, with times higher rate.
Our results have other important applications. First, for a similarly small
fraction of atmospheric neutrino quasielastic events, the proton is
relativistic. This uniquely selects (not ) events,
useful for understanding matter effects, and allows determination of the
neutrino energy and direction, useful for the dependence of oscillations.
Second, using accelerator neutrinos, both elastic and quasielastic events with
relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure
Heme catabolism by tumor-associated macrophages controls metastasis formation
Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1–CSF1R–C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker
Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment
We report the observation of TeV gamma-rays from the Cygnus region using the
ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources
are located in this region including the two bright extended MGRO J2019+37 and
MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is
the most significant source apart from the Crab Nebula. No signal from MGRO
J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper
limits at 90% confidence level for all the events above 600 GeV with medium
energy of 3 TeV are lower than the Milagro flux, implying that the source might
be variable and hard to be identified as a pulsar wind nebula. The only
statistically significant (6.4 standard deviations) gamma-ray signal is found
from MGRO J2031+41, with a flux consistent with the measurement by Milagro.Comment: 14 pages, 4 figure
Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector
In 2008 the blazar Markarian 421 entered a very active phase and was one of
the brightest sources in the sky at TeV energies, showing frequent flaring
episodes. Using the data of ARGO-YBJ, a full coverage air shower detector
located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at
gamma ray energies E > 0.3 TeV during the whole year. The observed flux was
variable, with the strongest flares in March and June, in correlation with
X-ray enhanced activity. While during specific episodes the TeV flux could be
several times larger than the Crab Nebula one, the average emission from day 41
to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6)
10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards.
This paper concentrates on the flares occurred in the first half of June.
This period has been deeply studied from optical to 100 MeV gamma rays, and
partially up to TeV energies, since the moonlight hampered the Cherenkov
telescope observations during the most intense part of the emission. Our data
complete these observations, with the detection of a signal with a statistical
significance of 3.8 standard deviations on June 11-13, corresponding to a gamma
ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed
differential spectrum, corrected for the intergalactic absorption, can be
represented by a power law with an index alpha = -2.1 extending up to several
TeV. The spectrum slope is fully consistent with previous observations
reporting a correlation between the flux and the spectral index, suggesting
that this property is maintained in different epochs and characterizes the
source emission processes.Comment: Accepted for publication on ApJ
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
- …