90 research outputs found

    Biotechnology can Improve a Traditional Product as Table Olives

    Get PDF
    Table olives are fermented vegetables very popular in the world and especially in the Mediterranean countries. Five main styles (Spanish or Sevillian, Castelvetrano, Siciliano, Californian, and Greek) are diffused to produce commercial products, beside several traditional styles. Although the main preparation methods of table olives are known for a long time, they are not yet optimized systems, and each of them is characterized by advantages and disadvantages. The use of NaOH for green olive debittering is responsible for the elimination of many aroma compounds and nutritionally important molecules. High volumes of heavily contaminated wastewaters are produced during olive processing. Spontaneous fermentation processes used to ferment black or green olives are difficult either to monitor or control. Microbial starters, selected for specific bio/technological and safety traits, can be useful to (i) improve the table olives organoleptic characteristics, (ii) control the fermentation process and significantly reduce the time to obtain a final product, (iii) monitor the correct evolution of the process, (iv) ensure the maintenance and/or improvement of nutritional and healthy features of the product, (v) protect table olives from undesired spoilage and pathogenic microorganisms, (vi) produce table olives as a carrier of microorganisms with probiotics characters, and (vii) enhance product stability and shelf life

    Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications

    Get PDF
    Patè Olive Cake (POC) is a new by-product derived from recently introduced new decanters in the olive oil production process. POC, is essentially composed of water, olive pulp and olive skin, and is rich in several valuable bioactive compounds. Moreover, it still contains about 8–12% residual olive oil. We characterized the main bioactive compounds in POC from black olives (cv. Leccino and Cellina di Nardò) and also verified the biotechnological aptitude of selected yeast and lactic acid bacteria from different sources, in transforming POC into a new fermented product. The strategy of sequential inoculum of Saccharomyces cerevisiae and Leuconostoc mesenteroides was successful in driving the fermentation process. In fermented POC total levels of phenols were slightly reduced when compared with a non-fermented sample nevertheless the content of the antioxidant hydroxytyrosol showed increased results. The total levels of triterpenic acids, carotenoids, and tocochromanols results were almost unchanged among the samples. Sensory notes were significantly improved after fermentation due to the increase of superior alcohols, esters, and acids. The results reported indicate a possible valorisation of this by-product for the preparation of food products enriched in valuable healthy compounds

    Differential olive grove management regulates the levels of primary metabolites in xylem sap

    Get PDF
    Aims The conventional management adopted in many Mediterranean olive orchards makes them more vulnerable to climate change and attacks by pathogens, due to the decreased chemical plant defenses. In this scenario, a metabolomic analysis was carried out on the xylem sap (Xsap) of olive plants (Olea europaea L.) grown in the Salento peninsula (Italy). Methods Trials were carried out in two olive groves, one organically and one conventionally managed (controls), successively both converted to sustainable management (i.e. frequent light pruning, soil and foliar fertilization, cover crops). The Xsap was extracted from the shoots of olive plants using a Scholander pressure chamber pressurized with N2 and gas chromatography-mass spectrometry metabolite profiling was performed in the Xsap. Results An untargeted gas chromatography mass spectrometry (GC-MS) based metabolomic analysis of primary metabolites (including underivatized volatiles) of the Xsap revealed relative abundances of 153 identified metabolites and 336 unknown features across the 12 samples from four groups of samples. Among them, more than half were involved in the primary metabolism. Many of the compounds with increased levels under sustainable management (such as amino acids, soluble sugars, sugar alcohols) have a well-known role as osmoprotectants or are involved in plant defense, growth and development during stress or recovery stages. Conclusions Sustainable management in olive groves can increase the ability of plants to overcome environmental stressors and enhance ecosystem balance

    Molecular characteristics of a strain (Salento-1) of Xylella fastidiosa isolated in Apulia (Italy) from an olive plant with the quick decline syndrome

    Get PDF
    DNA-based approaches were used to characterize a strain (Salento-1) of Xylella fastidiosa obtained from an olive plant suffering from the syndrome of quick decline in Apulia (South Italy). Salento-1 was indistinguishable from strain CoDiRO previously isolated from olive in Apulia and assigned to  X. fastidiosa subsp. pauca. Based on our results and comparative analysis with reported data, the subspecies pauca, multiplex, and fastidiosa may invade olive throughout the world (California, Italy, Argentina and Brazil). The strain Salento-1 has been deposited in the National Collection of Plant Pathogenic Bacteria (NCPPB), England, and in the Belgian Coordinated Collections of Microorganisms (BCCM), Belgium

    Autochthonous fermentation starters for the industrial production of Negroamaro wines

    Get PDF
    Abstract The aim of the present study was to establish a new procedure for the oenological selection of Saccharomyces cerevisiae strains isolated from natural must fermentations of an important Italian grape cultivar, denoted as "Negroamaro". For this purpose, 108 S. cerevisiae strains were selected as they did not produce H2S and then assayed by microfermentation tests. The adopted procedure made it possible to identify 10 strains that were low producers of acetic acid and hydrogen sulphide and showed that they completed sugar consumption during fermentation. These strains were characterized for their specific oenological and technological properties and, two of them, strains 6993 and 6920, are good candidates as industrial starter cultures. A novel protocol was set up for their biomass production and they were employed for industrial-scale fermentation in two industrial cellars. The two strains successfully dominated the fermentation process and contributed to increasing the wines' organoleptic quality. The proposed procedure could be very effective for selecting "company-specific" yeast strains, ideal for the production of typical regional wines. "Winery" starter cultures could be produced on request in a small plant just before or during the vintage season and distributed as a fresh liquid concentrate culture

    Molecular and Technological Characterization of Saccharomyces cerevisiae

    Get PDF
    The characterization of autochthonous Saccharomyces cerevisiae strains is an important step towards the conservation and employment of microbial biodiversity. The utilization of selected autochthonous yeast strains would be a powerful tool to enhance the organoleptic and sensory properties of typical regional wines. In fact, indigenous yeasts are better tailored to a particular must and because of this they are able to praise the peculiarities of the derived wine. The present study described the biodiversity of indigenous S. cerevisiae strains isolated from natural must fermentations of an ancient and recently rediscovered Apulian grape cultivar, denoted as “Susumaniello.” The yeast strains denoted by the best oenological and technological features were identified and their fermentative performances were tested by either laboratory assay. Five yeast strains showed that they could be excellent candidates for the production of industrial starter cultures, since they dominated the fermentation process and produced wines characterized by peculiar oenological and organoleptic features

    Insights on a founder effect: the case of Xylella fastidiosa in the Salento area of Apulia, Italy

    Get PDF
    Xylella fastidiosa causing disease on different plant species has been reported in several European countries, since 2013. Based on multilocus sequence typing (MLST) results, there is evidence of repeated introductions of the pathogen in Spain and France. In contrast, in the Salento area of Apulia (Puglia) in Southern Italy, the existence of a unique Apulian MLST genotype of X. fastidiosa, causing the olive quick decline syndrome (OQDS; also referred to as “CoDiRO” or “ST53”) was proven, and this was tentatively ascribed to X. fastidiosa subsp. pauca. In order to acquire information on intra population diversity European Food Safety Authority (EFSA) has strongly called for the characterization of X. fastidiosa isolates from Apulia to produce the necessary data to better understand strain diversity and evolution. In this work, for the first time the existence of sub-variants within a set of  14 “ST53” isolates of X. fastidiosa collected from different locations was searched using DNA typing methods targeting the whole pathogen genome. Invariably, VNTR, RAPD and rep-PCR (ERIC and BOX motifs) analyses indicated that all tested isolates possessed the same genomic fingerprint, supporting the existence of predominant epidemiological strain in Apulia. To further explore the degree of clonality within this population, two isolates from two different Salento areas (Taviano and Ugento) were completely sequenced using PacBio SMRT technology. The whole genome map and sequence comparisons revealed that both isolates are nearly identical, showing less than 0.001% nucleotide diversity. However, the complete and circularized Salento-1 and Salento-2 genome sequences were different, in genome and plasmid size, from the reference strain 9a5c of X. fastidiosa subsp. pauca (from citrus), and showed a PCR-proved large genome inversion of about 1.7 Mb. Genome-wide indices ANIm and dDDH indicated that the three isolates of X. fastidiosa from Salento (Apulia, Italy), namely Salento-1, Salento-2, and De Donno, whose complete genome sequence has been recently released, share a very recent common ancestor. This highlights the importance of continuous and extensive monitoring of molecular variation of this invasive pathogen to understand evolution of adaptive traits, and the necessity for adoption of all possible measures to reduce the risk of new introductions that may augment pathogen diversity

    Insights on a founder effect: the case of <em>Xylella fastidiosa</em> in the Salento area of Apulia, Italy

    Get PDF
    Xylella fastidiosa causing disease on different plant species has been reported in several European countries, since 2013. Based on multilocus sequence typing (MLST) results, there is evidence of repeated introductions of the pathogen in Spain and France. In contrast, in the Salento area of Apulia (Puglia) in Southern Italy, the existence of a unique Apulian MLST genotype of X. fastidiosa, causing the olive quick decline syndrome (OQDS; also referred to as “CoDiRO” or “ST53”) was proven, and this was tentatively ascribed to X. fastidiosa subsp. pauca. In order to acquire information on intra population diversity European Food Safety Authority (EFSA) has strongly called for the characterization of X. fastidiosa isolates from Apulia to produce the necessary data to better understand strain diversity and evolution. In this work, for the first time the existence of sub-variants within a set of  14 “ST53” isolates of X. fastidiosa collected from different locations was searched using DNA typing methods targeting the whole pathogen genome. Invariably, VNTR, RAPD and rep-PCR (ERIC and BOX motifs) analyses indicated that all tested isolates possessed the same genomic fingerprint, supporting the existence of predominant epidemiological strain in Apulia. To further explore the degree of clonality within this population, two isolates from two different Salento areas (Taviano and Ugento) were completely sequenced using PacBio SMRT technology. The whole genome map and sequence comparisons revealed that both isolates are nearly identical, showing less than 0.001% nucleotide diversity. However, the complete and circularized Salento-1 and Salento-2 genome sequences were different, in genome and plasmid size, from the reference strain 9a5c of X. fastidiosa subsp. pauca (from citrus), and showed a PCR-proved large genome inversion of about 1.7 Mb. Genome-wide indices ANIm and dDDH indicated that the three isolates of X. fastidiosa from Salento (Apulia, Italy), namely Salento-1, Salento-2, and De Donno, whose complete genome sequence has been recently released, share a very recent common ancestor. This highlights the importance of continuous and extensive monitoring of molecular variation of this invasive pathogen to understand evolution of adaptive traits, and the necessity for adoption of all possible measures to reduce the risk of new introductions that may augment pathogen diversity

    Molecular characteristics of a strain (Salento-1) of Xylella fastidiosa isolated in Apulia (Italy) from an olive plant with the quick decline syndrome

    Get PDF
    DNA-based approaches were used to characterize a strain (Salento-1) of Xylella fastidiosa obtained from an olive plant suffering from the syndrome of quick decline in Apulia (South Italy). Salento-1 was indistinguishable from strain CoDiRO previously isolated from olive in Apulia and assigned to  X. fastidiosa subsp. pauca. Based on our results and comparative analysis with reported data, the subspecies pauca, multiplex, and fastidiosa may invade olive throughout the world (California, Italy, Argentina and Brazil). The strain Salento-1 has been deposited in the National Collection of Plant Pathogenic Bacteria (NCPPB), England, and in the Belgian Coordinated Collections of Microorganisms (BCCM), Belgium
    corecore