54 research outputs found

    Test results from a uranium hadron calorimeter using wire chamber readout

    Full text link
    A uranium gas sampling calorimeter has been tested with electrons and pions between 1 and 50 GeV. A comparative evaluation of the response and the resolution for proportional and streamer mode operation of the gas wire chamber detectors is given for two different gas mixtures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26795/1/0000351.pd

    ATP-Dependent Unwinding of U4/U6 snRNAs by the Brr2 Helicase Requires the C Terminus of Prp8

    Get PDF
    The spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome

    DEAD-Box Protein Ddx46 Is Required for the Development of the Digestive Organs and Brain in Zebrafish

    Get PDF
    Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing

    Phylogenetic Distribution and Evolutionary History of Bacterial DEAD-Box Proteins

    Get PDF
    DEAD-box proteins are found in all domains of life and participate in almost all cellular processes that involve RNA. The presence of DEAD and Helicase_C conserved domains distinguish these proteins. DEAD-box proteins exhibit RNA-dependent ATPase activity in vitro, and several also show RNA helicase activity. In this study, we analyzed the distribution and architecture of DEAD-box proteins among bacterial genomes to gain insight into the evolutionary pathways that have shaped their history. We identified 1,848 unique DEAD-box proteins from 563 bacterial genomes. Bacterial genomes can possess a single copy DEAD-box gene, or up to 12 copies of the gene, such as in Shewanella. The alignment of 1,208 sequences allowed us to perform a robust analysis of the hallmark motifs of DEAD-box proteins and determine the residues that occur at high frequency, some of which were previously overlooked. Bacterial DEAD-box proteins do not generally contain a conserved C-terminal domain, with the exception of some members that possess a DbpA RNA-binding domain (RBD). Phylogenetic analysis showed a separation of DbpA-RBD-containing and DbpA-RBD-lacking sequences and revealed a group of DEAD-box protein genes that expanded mainly in the Proteobacteria. Analysis of DEAD-box proteins from Firmicutes and γ-Proteobacteria, was used to deduce orthologous relationships of the well-studied DEAD-box proteins from Escherichia coli and Bacillus subtilis. These analyses suggest that DbpA-RBD is an ancestral domain that most likely emerged as a specialized domain of the RNA-dependent ATPases. Moreover, these data revealed numerous events of gene family expansion and reduction following speciation

    Beruht die Arbeitshyperthermie auf einer Sollwertverstellung?

    No full text

    On the problem of passive smoking

    No full text

    Adjuvants and Vaccines Used in Allergen-Specific Immunotherapy Induce Neutrophil Extracellular Traps

    No full text
    Aluminum hydroxide (alum) and monophosphoryl-lipid A (MPLA) are conventional adjuvants in vaccines for allergen-specific immunotherapy (AIT). Alum triggers the release of neutrophil extracellular traps (NETs) by neutrophils. NETs contain expelled decondensed chromatin associated with granular material and may act as danger-associated molecular patterns and activate antigen-presenting cells. We investigated whether adjuvant-induced NETs contribute to innate responses to AIT-vaccines. Human neutrophils were incubated with alum, MPLA and adjuvant-containing AIT-vaccine preparations. NETs were verified by time-lapse and confocal fluorescence microscopy and quantitatively assessed by DNA and elastase release and ROS production. In contrast to MPLA, alum represented a potent trigger for NET release. Vaccine formulations containing alum resulted in less NET release than alum alone, whereas the vaccine containing MPLA induced stronger NET responses than MPLA alone. NETs and alum alone and synergistically increased the expression of molecules involved in antigen presentation, i.e., CD80, CD86 and CD83, by peripheral blood monocytes. Monocyte priming with NETs resulted in individually differing IL-1β- and IL-6-responses. Thus, NETs induced by adjuvants in AIT-vaccines can provide autonomous and cooperative effects on early innate responses. The high diversity of individual innate responses to adjuvants and AIT-vaccines may affect their therapeutic efficacy
    corecore