10 research outputs found

    Micro black holes in the laboratory

    Get PDF
    The possibility of creating microscopic black holes is one of the most exciting predictions for the LHC, with potentially major consequences for our current understanding of physics. We briefly review the theoretical motivation for micro black hole production, and our understanding of their subsequent evolution. Recent work on modelling the radiation from quantum-gravity-corrected black holes is also discussed

    Production and evaporation of Planck scale black holes at the LHC

    Get PDF
    We review the phenomenology of mini black holes at colliders in light of the latest data from the LHC. By improving the conventional production cross-section, we show that the current non-observation of black hole signals can be explained in terms of quantum gravity effects. In the most optimistic case, black hole production could take place at a scale slightly above the LHC design energy. We also analyse possible new signatures of quantum-corrected Planck-scale black holes: in contrast to the semiclassical scenario the emission would take place in terms of soft particles mostly on the brane

    Spinning Loop Black Holes

    Full text link
    In this paper we construct four Kerr-like spacetimes starting from the loop black hole Schwarzschild solutions (LBH) and applying the Newman-Janis transformation. In previous papers the Schwarzschild LBH was obtained replacing the Ashtekar connection with holonomies on a particular graph in a minisuperspace approximation which describes the black hole interior. Starting from this solution, we use a Newman-Janis transformation and we specialize to two different and natural complexifications inspired from the complexifications of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that the space-times obtained in this way are singularity free and thus there are no naked singularities. We show that the transformation move, if any, the causality violating regions of the Kerr metric far from r=0. We study the space-time structure with particular attention to the horizons shape. We conclude the paper with a discussion on a regular Reissner-Nordstrom black hole derived from the Schwarzschild LBH and then applying again the Newmann-Janis transformation.Comment: 18 pages, 18 figure

    TeV Mini Black Hole Decay at Future Colliders

    Full text link
    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation lead to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of String Theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions.By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3-Brane embedded into an higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and include the presence of D-branes. Furthermore, unification of fundamental interactions at an energy scale many order of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this article we review higher dimensional black hole decay, considering not only the emission of particles according to Hawking mechanism, but also their near horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear experimental signature of the event.Comment: 22 pages, 9 figures, 4 tables; ``quick review'' for Class. and Quantum Gra

    Hawking emission from quantum gravity black holes

    Get PDF
    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. We consider the higher dimensional, spherically symmetric case and we proceed with a complete analysis of the brane/bulk emission for scalar fields. The key feature which makes the evaporation of non-commutative black holes so peculiar is the possibility of having a maximum temperature. Contrary to what happens with classical Schwarzschild black holes, the emission is dominated by low frequency field modes on the brane. This is a distinctive and potentially testable signature which might disclose further features about the nature of quantum gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections, version matching that published on JHE

    Renormalization group improved black hole space-time in large extra dimensions

    Full text link
    By taking into account a running of the gravitational coupling constant with an ultra violet fixed point, an improvement of classical black hole space-times in extra dimensions is studied. It is found that the thermodynamic properties in this framework allow for an effective description of the black hole evaporation process. Phenomenological consequences of this approach are discussed and the LHC discovery potential is estimated.Comment: 13 pages, 6 figure

    Minimum black hole mass from colliding Gaussian packets

    Full text link
    We study the formation of a black hole in the collision of two Gaussian packets. Rather than following their dynamical evolution in details, we assume a horizon forms when the mass function for the two packets becomes larger than half the flat areal radius, as it would occur in a spherically symmetric geometry. This simple approximation allows us to determine the existence of a minimum black hole mass solely related to the width of the packets. We then comment on the possible physical implications, both in classical and quantum physics, and models with extra spatial dimensions.Comment: 11 pages, 4 figure

    Physics on Smallest Scales - an Introduction to Minimal Length Phenomenology

    No full text
    Many modern theories which try to unify gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: i) the existence of additional space dimensions; ii) the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non-commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity induced minimal length. This article is intended for graduate students and non-specialists interested in quantum gravity.Comment: v1: 10 pages, 3 figures, paper originated by a summer study for bachelor students at the University of Frankfurt; v2: 11 pages, 3 figures, minor modifications, version accepted for publication on European Journal of Physic
    corecore