669 research outputs found

    Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. Coalescence

    Full text link
    We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of Elab=1−160AE_{lab}=1-160 A GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for di-baryons including Ξ\Xi's, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti-4He^4He and even anti-Λ4He^4_{\Lambda}He is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor RHR_H when comparing the thermal production with the coalescence results.Comment: 9 pages, 8 figures and 2 tables, version accepted by PL

    How Sensitive are Di-Leptons from Rho Mesons to the High Baryon Density Region?

    Full text link
    We show that the measurement of di-leptons might provide only a restricted view into the most dense stages of heavy ion reactions. Thus, possible studies of meson and baryon properties at high baryon densities, as e.g. done at GSI-HADES and envisioned for FAIR-CBM, might observe weaker effects than currently expected in certain approaches. We argue that the strong absorption of resonances in the high baryon density region of the heavy ion collision masks information from the early hot and dense phase due to a strong increase of the total decay width because of collisional broadening. To obtain additional information, we also compare the currently used approaches to extract di-leptons from transport simulations - i.e. shining, only vector mesons from final baryon resonance decays and instant emission of di-leptons and find a strong sensitivity on the method employed in particular at FAIR and SPS energies. It is shown explicitly that a restriction to rho meson (and therefore di-lepton) production only in final state baryon resonance decays provide a strong bias towards rather low baryon densities. The results presented are obtained from UrQMD v2.3 calculations using the standard set-up.Comment: 8 pages, 6 figures, expanded versio

    From FAIR to RHIC, hyper clusters and an effective strange EoS for QCD

    Full text link
    Two major aspects of strange particle physics at the upcoming FAIR and NICA facilities and the RHIC low energy scan will be discussed. A new distinct production mechanism for hypernuclei will be presented, namely the production abundances for hypernuclei from Λ\Lambda's absorbed in the spectator matter in peripheral heavy ion collisions. As strangeness is not uniformly distributed in the fireball of a heavy ion collision, the properties of the equation of state therefore depend on the local strangeness fraction. The same, inside neutron stars strangeness is not conserved and lattice studies on the properties of finite density QCD usually rely on an expansion of thermodynamic quantities at zero strange chemical potential, hence at non-zero strange-densities. We will therefore discuss recent investigations on the EoS of strange-QCD and present results from an effective EoS of QCD that includes the correct asymptotic degrees of freedom and a deconfinement and chiral phase transition.Comment: Talk given at the international conference on Strangeness in Quark Matter 2011 in Krako

    UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies

    Full text link
    Two-pion Hanbury-Brown-Twiss (HBT) correlations for p+p and central Pb+Pb collisions at the Large-Hadron-Collider (LHC) energies are investigated with the ultra-relativistic quantum molecular dynamics model combined with a correlation afterburner. The transverse momentum dependence of the Pratt-Bertsch HBT radii RlongR_{long}, RoutR_{out}, and RsideR_{side} is extracted from a three-dimensional Gaussian fit to the correlator in the longitudinal co-moving system. In the p+p case, the dependence of correlations on the charged particle multiplicity and formation time is explored and the data allows to constrain the formation time in the string fragmentation to τf≀0.8\tau_f \leq 0.8 fm/c. In the Pb+Pb case, it is found that RoutR_{out} is overpredicted by nearly 50%. The LHC results are also compared to data from the STAR experiment at RHIC. For both energies we find that the calculated Rout/RsideR_{out}/R_{side} ratio is always larger than data, indicating that the emission in the model is less explosive than observed in the data.Comment: 9 pages, 4 figures, 1 table. Talk given by Qingfeng Li at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions

    Full text link
    We investigate hadron production as well as transverse hadron spectra from proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 A⋅A\cdotGeV to 21.3 A⋅A\cdotTeV within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data on transverse mass spectra from pppp, pApA and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ∌\sim 5 A⋅\cdotGeV, furthermore, the measured K±K^{\pm} transverse mass spectra have a larger inverse slope parameter than expected from the default calculations. We investigate various scenarios to explore their potential effects on the K±K^\pm spectra. In particular the initial state Cronin effect is found to play a substantial role at top SPS and RHIC energies. However, the maximum in the K+/π+K^+/\pi^+ ratio at 20 to 30 A⋅\cdotGeV is missed by ~40% and the approximately constant slope of the K±K^\pm spectra at SPS energies is not reproduced either. Our systematic analysis suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential ÎŒq\mu_q and temperature TT- should be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.Comment: 20 pages, 15 figures, Phys. Rev. C, in pres

    Anisotropic flow at RHIC: How unique is the number-of-constituent-quark scaling?

    Get PDF
    The transverse momentum dependence of the anisotropic flow v2v_2 for π\pi, KK, nucleon, Λ\Lambda, Ξ\Xi and Ω\Omega is studied for Au+Au collisions at sNN=200\sqrt{s_{\rm NN}} = 200 GeV within two independent string-hadron transport approaches (RQMD and UrQMD). Although both models reach only 60% of the absolute magnitude of the measured v2v_2, they both predict the particle type dependence of v2v_2, as observed by the RHIC experiments: v2v_2 exhibits a hadron-mass hierarchy (HMH) in the low pTp_T region and a number-of-constituent-quark (NCQ) dependence in the intermediate pTp_T region. The failure of the hadronic models to reproduce the absolute magnitude of the observed v2v_2 indicates that transport calculations of heavy ion collisions at RHIC must incorporate interactions among quarks and gluons in the early, hot and dense phase. The presence of an NCQ scaling in the string-hadron model results suggests that the particle-type dependencies observed in heavy-ion collisions at intermediate pTp_T might be related to the hadronic cross sections in vacuum rather than to the hadronization process itself.Comment: 10 pages, 5 figures; A new author (H. Petersen) is added; A new figure (fig.1) on time evolution of elliptic flow and number of collisions is added; Version accepted for publication in J. Phys.

    Transverse Pressure and Strangeness Dynamics in Relativistic Heavy Ion Reactions

    Get PDF
    Transverse hadron spectra from proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 AGeV to 21.3 ATeV are investigated within two independent transport approaches (HSD and UrQMD). For central Au+Au (Pb+Pb) collisions at energies above Elab∌E_{\rm lab}\sim 5 AGeV, the measured K±K^{\pm} transverse mass spectra have a larger inverse slope parameter than expected from the default calculations. The additional pressure - as suggested by lattice QCD calculations at finite quark chemical potential ÎŒq\mu_q and temperature TT - might be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions. This is supported by a non-monotonic energy dependence of v2/v_2/ in the present transport model.Comment: Proceedings of Strange Quark Matter 200

    Current Status of Quark Gluon Plasma Signals

    Get PDF
    Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J\psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.Comment: 12 pages, 6 figures, Proceedings of the Symposium on Fundamental Issues in Elementary Matter In Honor and Memory of Michael Danos 241. WE-Heraeus-Seminar Bad Honnef, Germany, 25--29 September 2000. To appear in Heavy Ion Phy

    Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach

    Get PDF
    We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 - 3 depending on the hadron species.Comment: 10 pages, 4 eps figures include
    • 

    corecore