23 research outputs found

    Discovery of a Selective, Substrate-Competitive Inhibitor of the Lysine Methyltransferase SETD8

    Get PDF
    The lysine methyltransferase SETD8 is the only known methyltransferase that catalyzes monomethylation of histone H4 lysine 20 (H4K20). Monomethylation of H4K20 has been implicated in regulating diverse biological processes including the DNA damage response. In addition to H4K20, SETD8 monomethylates non-histone substrates including proliferating cell nuclear antigen (PCNA) and promotes carcinogenesis by deregulating PCNA expression. However, selective inhibitors of SETD8 are scarce. The only known selective inhibitor of SETD8 to date is nahuoic acid A, a marine natural product, which is competitive with the cofactor. Here, we report the discovery of the first substrate-competitive inhibitor of SETD8, UNC0379 (1). This small-molecule inhibitor is active in multiple biochemical assays. Its affinity to SETD8 was confirmed by ITC (isothermal titration calorimetry) and SPR (surface plasmon resonance) studies. Importantly, compound 1 is selective for SETD8 over 15 other methyltransferases. We also describe structure–activity relationships (SAR) of this series

    Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology

    Get PDF
    ABSTRACT Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these “singleton” BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus’s metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized metabolites produced by Bacillus species are highly conserved, known compounds with important signaling roles in the physiology and development of this bacterium. Additionally, there is significant unique biosynthetic machinery distributed across the genus that might lead to new, unknown metabolites with diverse biological functions. Inspired by the findings of our genomic analysis, we speculate that the highly conserved alkylpyrones might have an important biological activity within this genus. We go on to validate this prediction by demonstrating that these natural products are developmental signals in Bacillus and act by inhibiting sporulation

    Growing old together: What we know about the influence of diet and exercise on the aging host's gut microbiome

    Get PDF
    The immune system is critical in defending against infection from pathogenic microorganisms. Individuals with weakened immune systems, such as the elderly, are more susceptible to infections and developing autoimmune and inflammatory diseases. The gut microbiome contains a plethora of bacteria and other microorganisms, which collectively plays a significant role in immune function and homeostasis. Gut microbiota are considered to be highly influential on host health and immune function. Therefore, dysbiosis of the microbiota could be a major contributor to the elevated incidence of multiple age-related pathologies. While there seems to be a general consensus that the composition of gut microbiota changes with age, very little is known about how diet and exercise might influence the aging microbiome. Here, we examine the current state of the literature regarding alterations to the gut microbiome as hosts age, drawing particular attention to the knowledge gaps in addressing how diet and exercise influence the aging microbiome. Further, we will demonstrate the need for more controlled studies to investigate the roles that diet and exercise play driving the composition, diversity, and function of the microbiome in an aging population

    Perspectivas da investigação sobre determinantes sociais em cùncer

    Full text link

    A consortia of clinical E. coli strains with distinct in vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice

    No full text
    Abstract Background Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in vitro definition fully predicts mucosal colonization in vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. Results Germ-free inflammation-susceptible interleukin-10-deficient (Il10 −/− ) and inflammation-resistant WT mice were colonized with a consortium of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10 −/− mice. These E. coli expand in Il10 −/− mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. Conclusions Our findings establish the in vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in vivo colonization dynamics of patient-derived bacteria in murine models. Video Abstrac

    Cytotoxic oplopane sesquiterpenoids from <i>Arnoglossum atriplicifolium</i>

    No full text
    <p>Pale Indian plantain (<i>Arnoglossum atriplicifolium</i> (L.) H. Rob.) is a plant with traditional medicinal usage among the Cherokee Native American tribe for treating cancer. Two oplopane sesquiterpenoids were isolated from an extract of <i>A. atriplicifolium</i> from Western North Carolina. The compounds were isolated by bioassay-guided fractionation using an MCF-7 breast tumour cell line assay. The known compound (1<i>S</i>,6<i>R</i>,7<i>R</i>,8<i>R</i>)-1-acetoxy-6,7-diangeloxy-8,10-epoxy-2-oxo-oplopa-3,14Z,11,12-dien-13-al (<b>1</b>) had an EC<sub>50</sub> value of 9.0 ΌM against MCF-7 cells, while the new compound (1<i>S</i>,3<i>R</i>,6<i>R</i>,7<i>R</i>,8<i>R</i>,11<i>S</i>)-1-acetoxy-6,7-diangeloxy-8,10,11,13-bisepoxyoplopan-2-one (<b>2</b>) had an EC<sub>50</sub> value of 96 ΌM. The compounds were characterised by 1D and 2D NMR spectroscopy and by comparison with literature values in the case for <b>1</b>. Based on NOESY analysis, a correction of the relative configuration for <b>1</b> is presented. The presence of these compounds may help to explain the folk remedy usage of this plant as an anticancer agent.</p
    corecore