51 research outputs found

    Post-traumatic stress disorder following patient assaults among staff members of mental health hospitals: a prospective longitudinal study

    Get PDF
    BACKGROUND: Violence by patients against staff members in mental health institutions has become an important challenge. Violent attacks may not only cause bodily injuries but can also have posttraumatic consequences with high rates of stress for mental health staff. This study prospectively assessed posttraumatic stress disorder (PTSD) in employees who were severely assaulted by patients in nine German state mental health institutions. METHODS: During the study period of six months 46 assaulted staff members were reported. Each staff member was interviewed three times after the violent incident, using the Impact of Event Scale-Revised (IES-R), a widely used PTSD research tool, as well as the Posttraumatic Stress Disorder Checklist – Civilian (PCL-C). RESULTS: In the baseline assessment following an assault by a patient, eight subjects (17%) met the criteria for PTSD. After two and six months, three and four subjects respectively still met diagnosis criteria. CONCLUSION: A small minority of assaulted employees suffer from PTSD for several months after a patient assault

    Interfacility Helicopter Ambulance Transport of Neurosurgical Patients: Observations, Utilization, and Outcomes from a Quaternary Level Care Hospital

    Get PDF
    The clinical benefit of helicopter transport over ground transportation for interfacility transport is unproven. We sought to determine actual practice patterns, utilization, and outcomes of patients undergoing interfacility transport for neurosurgical conditions.We retrospectively examined all interfacility helicopter transfers to a single trauma center during 2008. We restricted our analysis to those transfers leading either to admission to the neurosurgical service or to formal consultation upon arrival. Major exclusion criteria included transport from the scene, death during transport, and transport to any area of the hospital other than the emergency department. The primary outcome was time interval to invasive intervention. Secondary outcomes were estimated ground transportation times from the referring hospital, admitting disposition, and discharge disposition. Of 526 candidate interfacility helicopter transfers to our emergency department in 2008, we identified 167 meeting study criteria. Seventy-five (45%) of these patients underwent neurosurgical intervention. The median time to neurosurgical intervention ranged from 1.0 to 117.8 hours, varying depending on the diagnosis. For 101 (60%) of the patients, estimated driving time from the referring institution was less than one hour. Four patients (2%) expired in the emergency department, and 34 patients (20%) were admitted to a non-ICU setting. Six patients were discharged home within 24 hours. For those admitted, in-hospital mortality was 28%.Many patients undergoing interfacility transfer for neurosurgical evaluation are inappropriately triaged to helicopter transport, as evidenced by actual times to intervention at the accepting institution and estimated ground transportation times from the referring institution. In a time when there is growing interest in health care cost containment, practitioners must exercise discretion in the selection of patients for air ambulance transport--particularly when it may not bear influence on clinical outcome. Neurosurgical evaluation via telemedicine may be one strategy for improving air transport triage

    External validation of the Scandinavian guidelines for management of minimal, mild and moderate head injuries in children

    Get PDF
    © 2018 The Author(s). Background: Clinical decision rules (CDRs) aid in the management of children with traumatic brain injury (TBI). Recently, the Scandinavian Neurotrauma Committee (SNC) has published practical, evidence-based guidelines for children with Glasgow Coma Scale (GCS) scores of 9-15. This study aims to validate these guidelines and to compare them with other CDRs. Methods: A large prospective cohort of children (< 18 years) with TBI of all severities, from ten Australian and New Zealand hospitals, was used to assess the SNC guidelines. Firstly, a validation study was performed according to the inclusion and exclusion criteria of the SNC guideline. Secondly, we compared the accuracy of SNC, CATCH, CHALICE and PECARN CDRs in patients with GCS 13-15 only. Diagnostic accuracy was calculated for outcome measures of need for neurosurgery, clinically important TBI (ciTBI) and brain injury on CT. Results: The SNC guideline could be applied to 19,007/20,137 of patients (94.4%) in the validation process. The frequency of ciTBI decreased significantly with stratification by decreasing risk according to the SNC guideline. Sensitivities for the detection of neurosurgery, ciTBI and brain injury on CT were 100.0% (95% CI 89.1-100.0; 32/32), 97.8% (94.5-99.4; 179/183) and 95% (95% CI 91.6-97.2; 262/276), respectively, with a CT/admission rate of 42% (mandatory CT rate of 5%, 18% CT or admission and 19% only admission). Four patients with ciTBI were missed; none needed specific intervention. In the homogenous comparison cohort of 18,913 children, the SNC guideline performed similar to the PECARN CDR, when compared with the other CDRs. Conclusion: The SNC guideline showed a high accuracy in a large external validation cohort and compares well with published CDRs for the management of paediatric TBI
    • …
    corecore